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■ To remain competitive, enterprises must become
increasingly agile and integrated across their func-
tions. Enterprise models play a critical role in this
integration, enabling better designs for enterprises,
analysis of their performance, and management of
their operations. This article motivates the need
for enterprise models and introduces the concepts
of generic and deductive enterprise models. It
reviews research to date on enterprise modeling
and considers in detail the Toronto virtual enter-
prise effort at the University of Toronto.

An enterprise model is a computational rep-
resentation of the structure, activities,
processes, information, resources, peo-

ple, behavior, goals, and constraints of a busi-
ness, government, or other enterprise. It can be
both descriptive and definitional—spanning
what is and what should be. The role of an
enterprise model is to achieve model-driven
enterprise design, analysis, and operation.

From a design perspective, an enterprise
model should provide the language used to
explicitly define an enterprise. We need to be
able to explore alternative models in the design
of enterprises spanning organization structure
and behavior. To reason about alternative
designs for enterprises, we need to reason
about different possible sets of constraints for
enterprises within the model. We need to ask
the following questions: Can a process be per-
formed in a different way, or can we achieve
some goal in a different way? Can we relax the
constraints in the enterprise such that we can
improve performance or achieve new goals?

We also need to be able to determine the
impact of changes on all parts of the enter-
prise. For example, how will relaxation of poli-
cies affect the quality of products or services
provided by the enterprise? How will the pur-
chase of a new machine affect the activities
that are performed? Will we need to retrain
people in the enterprise to give them the skills
to use the machine? How will changing the
activities change resource consumption?

From an operations perspective, the enter-
prise model must be able to represent what is
planned, what might happen, and what has

happened. It must supply the information and
knowledge necessary to support the operations
of the enterprise, whether they be performed
by hand or machine. It must be able to provide
answers to questions commonly asked in the
performance of tasks.

In this article, we motivate the need for an
enterprise model and introduce the concept of
a generic enterprise model (GEM). We then
extend the concept of a GEM to a deductive
enterprise model (DEM) and then briefly
review research to date. Next, we discuss crite-
ria for selecting a GEM or a DEM and then
review the Toronto virtual enterprise (TOVE)
DEM effort at the University of Toronto.

Motivation: 
Integrating the Enterprise

To remain competitive, enterprises, regardless
of whether they are industrial, financial, gov-
ernmental, or something else, must produce
products and services that are “of consistently
high quality throughout the product/service’s
life, customized to local market needs, open in
that they may be integrated with other prod-
ucts/services, environmentally benign, and
technically advanced” (Nagel and Dove 1991,
p. 7). The key to achieving these capabilities is
“agility” (Nagel and Dove 1991, p. 7). Agility
implies the ability to “continuously monitor
market demand; quickly respond by providing
new products, services, and information;
quickly introduce new technologies; and
quickly modify business methods” (Nagel and
Dove 1991, p. 9). The problem is how to design
and operate an agile enterprise.

Nagel (1993, p. 77) provides four strategic
principles of agility: (1) “Use an entrepreneur-
ial organization strategy.” (2) “Invest to in-
crease the strategic impact of people and infor-
mation on the bottom line.” (3) “Use the
virtual organization strategy as a dynamic
structure both inside and outside the enter-
prise.” (4) “Adopt a value-based strategy to
configure your products and services into solu-
tions for your customers.”
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core a data model of the organization, span-
ning resources, activities, and products. They
use this model to plan and control operations.
Today, MRP systems have evolved into enter-
prise requirements planning systems, where
the enterprise model is viewed as a major com-
ponent.1 Similarly, business-process reengi-
neering tools, such as FIRSTSTEP from Interfacing
Technologies, BONAPART from UBIS GmbH, and
RETHINK from Gensym, have at their core an
enterprise model.2 It would not be overly gen-
eral to say that most information systems in
use within an enterprise incorporate a model
of some aspect of the enterprise’s structure,
operations, or knowledge.

The problem that we face today is that the
legacy systems that support enterprise func-
tions were created independently and, conse-
quently, do not share the same enterprise
models. We call this the correspondence problem.
Although each enterprise model might repre-
sent the same concept, for example, activity,
they will have a different name, for example,
operation versus task. Consequently, commu-
nication among functions is not possible with-
out at least some translation, but no matter
how rational the idea of renaming them is,
organizational barriers impede it. Further,
these representations lack an adequate specifi-
cation of what the objects (terminology) mean
(that is, semantics). Instead, concepts are poor-
ly defined, and their interpretations overlap,
leading to inconsistent interpretations and
uses of the knowledge. Finally, the cost of
designing, building, and maintaining a model
of the enterprise is large. Each tends to be
unique to the enterprise; objects are enterprise
specific.

As a solution to this problem, there has been
an increasing interest in GEMs. A GEM is an
object library that defines the classes of objects
that are generic across a type of enterprise,
such as manufacturing or banking, and can be
used (that is, instantiated) in defining a specif-
ic enterprise. A GEM is composed of the fol-
lowing: (1) a set of object classes structured as
a taxonomy (that is, each object is linked to
one or more other objects by a subclass-super-
class relationship plus a definition of how a
class refines its superclass); (2) for each object
class, a set of relations linking it to other object
classes plus a definition of the intended mean-
ing of each relation; (3) for each object class, a
set of attributes plus a definition of the intend-
ed meaning of each attribute.

The benefits of employing a GEM at the out-
set when creating an enterprise model are as
follows:

Predefined object library: Most database

The entrepreneurial and virtual nature of
the agile organization, coupled with the need
for people and information to have a strategic
impact, entails a greater degree of communica-
tion, coordination, and cooperation within
and among enterprises. In other words, the
agile organization must be integrated. By inte-
grated, we mean the structural, behavioral, and
informational integration of the enterprise.

Business-process reengineering addresses the
issue of structural integration by reorganizing
enterprises along critical business processes,
such as the supply chain and the product life
cycle, that span traditional organizational
units such as sales and manufacturing (Daven-
port 1993; Hammer and Champy 1993).

Just as important as integrating the structure
of the enterprise along process lines is the
behavioral and informational integration of
the enterprise. Hansen (1991) defined five
principles of behavioral and informational
integration:

First is “when people understand the vision,
or larger task, of an enterprise and are given
the right information, the resources, and the
responsibility, they will ‘do the right thing’.”

Second is “empowered people—and with
good leadership, empowered groups—will
have not only the ability but also the desire to
participate in the decision process.”

Third is “the existence of a comprehensive
and effective communications network.… This
network must distribute knowledge and infor-
mation widely, embracing the openness and
trust that allow the individual to feel empow-
ered to affect the ‘real’ problems.”

Fourth is “the democratization and dissem-
ination of information throughout the net-
work in all directions irrespective of organiza-
tional position…ensures that the Integrated
Enterprise is truly integrated.”

Fifth is that “information freely shared with
empowered people who are motivated to make
decisions will naturally distribute the decision-
making process throughout the entire organi-
zation.”

Achieving integration requires more than
principles; it also requires the development of
an information infrastructure that supports
the communication of information and
knowledge, the making of decisions, and the
coordination of actions. At the heart of this
infrastructure lies a model of the enterprise.

Over the last 30 years, the role of enterprise
models in the design and operation of enter-
prises has reached the point that few organiza-
tions of significant size can operate without
them. For example, manufacturing require-
ments planning (MRP) systems have at their
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engineers often start from scratch when creat-
ing an enterprise model. Defining the correct
set of object classes is a daunting and time-
consuming task. A GEM provides the object
classes, allowing the engineer to quickly move
on to model instantiation.

Path for growth: Many enterprise modelers
do not know what they have left out until it is
too late. By incorporating a GEM, many of the
concepts that they might not have anticipated
needing are already there; the modeler has
benefited from the experience of others.

Shared conceptualization: By adopting a
GEM, other parts of the organization stand a
greater chance of understanding what is repre-
sented in the enterprise model.

Ultimately, these benefits affect the bottom
line. Both time and costs are reduced.

Commonsense 
Enterprise Models

The usefulness of an instantiated GEM is deter-
mined by the functions it can support, for
example, scheduling, forecasting, and ac-
counting. Because the interface to an enter-
prise model is through the query language pro-
vided by the underlying database, the
functions that a GEM can support are deter-
mined by the categories of queries that the
GEM can provide answers to (if properly
instantiated). However, the queries that a GEM
can answer are not just determined by the
object library and its instantiations but by
additional processing that might be provided.

Where does the GEM end and inference
begin? If no inference capability is to be
assumed, then question answering is strictly
reducible to looking up an answer that is rep-
resented explicitly in the model. In contrast,
current object models have assumed at least
inheritance as a deduction mechanism;
answers can be provided that assume proper-
ties of the class apply to an instance. In defin-
ing an enterprise model, key questions are as
follows: Should we be restricted to just an
object library? Should the objects assume an
inheritance mechanism or some type of theo-
rem-proving capability, as provided, say, in a
logic programming language with axioms
restricted to Horn clauses (that is, PROLOG)? In
other words, what is the deductive capability
that is to be assumed by a GEM?

We introduce three types of query: (1) factu-
al, (2) expert, and (3) common sense. Consider
a relational database system. Such databases
support factual queries by the direct retrieval
of information represented explicitly in the
model (that is, surface-level processing). Con-

sider a model with an SQL interface. Informa-
tion is explicitly represented if it can be
retrieved using a simple select command. For
example, if the model contains a works-for
relation, and it is explicitly represented that
Joe works-for Fred, then the database can
return the answer Fred in response to a query
of “who does Joe works-for”.3

Expert queries require that the information
system have extensive knowledge and reason-
ing capabilities (that is, deep-level processing).
Expert systems provide deep-level processing
(Fox 1990). By deep level, we mean that a sig-
nificant amount of knowledge or search, that
is, deductions, has to be performed to provide
a response to a query. To answer a query
regarding the cause of a machine malfunction,
the expert system might have to reason about
the structure and behavior of the machine. It
must have a detailed model of the domain,
and it can be unique to the specific enterprise.
Such systems tend to be costly to build and
maintain and are narrow in scope.

Commonsense queries require that the
information system be able to deduce answers
to questions that one would normally assume
can be answered if one has a commonsense
understanding of the enterprise. Such an
understanding often represents knowledge
about the enterprise acquired over a relatively
short period of time, for example, three to nine
months, and does not denote knowledge of an
expert nature. That is, the knowledge should be
broad and not deep and must support a
tractable subclass of queries. For example,
knowledge of an organization’s structure, roles,
goals, and resources would enable the deduc-
tion of what resources a person might allocate
based on his/her role in the organization.4 It
could be argued that the majority of queries
posed to a database are in this third category:
common sense. If GEMs were designed to sup-
port commonsense queries, a significant por-
tion of the management information system
(MIS) backlog could be done away with.

Commonsense query processing assumes a
third level of processing that we refer to as
shallow-level processing. By shallow level, we
mean retrieval that requires a small number of
deductions to answer the query. For an enter-
prise model to support commonsense query
processing, it must provide a set of rules of
deduction, that is, axioms. For the works-for
example, we would require an axiom stating
that works-for is transitive:

x works-for y AND y works-for z IMPLIES x
works-for z . (1)

We distinguish between (1) an enterprise mod-
el that includes axioms that support deduction
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intended interpretations of the terminology,
and a set of axioms that are sound and com-
plete with respect to the intended interpreta-
tions; that is, every consistent interpretation of
the axioms is an intended interpretation, and
every intended interpretation is consistent
with the axioms.

ICAM
Attempts to create industrywide standards
began to appear with the United States Air
Force integrated computer-aided manufactur-
ing (ICAM) effort in the early 1980s. A GEM for
the aerospace industry was developed (Martin
and Smith 1983; Martin et al. 1983). The fol-
lowing list is an example of the part object’s
relations from a design perspective, as defined
in the ICAM model; each relation is followed
by other objects in the ICAM GEM that the
relation links the part object to: (1) Is Changed
By—part change (also shown as “is modified
by”); (2) Appears As—next assembly usage
item (also shown as “is referenced as”); (3)
Has—replacement part; (4) Has Subtype
(Is)—parts list item, replacement part; (5) Is
Used As—next assembly usage, advance mate-
rial notice item part, configuration list item;
(6) Is Totally Defined By—drawing; (7) Is Listed
By (Lists)—configuration list; (8) Is Used
In—effectivity; and (9) Is Fabricated From—
authorized material.

The following are the basic relations and
objects they are linked to for a part from a man-
ufacturing perspective in the ICAM GEM
(Smith, Ruegsegger, and St. John 1983): (1)
Has—N.C. program, material issue, component
part, alternative part, part-process specification
use, material receipt, work package, part tool
requirement, part requirement for material,
standard routing use, image part, part drawing;
(2) Is Assigned To (Has Assigned To It)—index;
(3) Is Defined By (Defines)— released engineer-
ing drawing; (4) Is Subject Of—quote request,
supplier quote; (5) Is Transported By—
approved part carrier; (6) Is Received By—Sup-
plier del lot. (7) Appears As—part lot, ordered
part, serialized part instance, scheduled part,
requested purchase part; (8) Conforms To—part
specification; (9) Is Inverse—component part,
alternate part, section, end item, configured
item, image part; (10) Is Used As—component
part callout, process plan material callout; (11)
Is Supplied By—approved part source: (12)
Manufacture Is Described By—process plan;
(13) Satisfies—end-item requirement for part;
(14) Is Requested By—manufacturing request;
(15) Is Stored At—Stock location use for part;
and (16) Is Specified By—bill of materials
(BOM) item.

and (2) a model without axioms where deduc-
tions are specified by the query. In the first
case, the model would be able to deduce that
Joe works-for John in response to a query ask-
ing “who does Joe work for?” In the second
case, the user would have to specify a complex
query that would include as many join com-
mands as necessary to travel along the works-
for relation. Because the user does not know at
the outset the depth of the works-for path,
he/she might not get the information he/she is
looking for. We call a GEM that includes
axioms and a deduction engine (that is, theo-
rem prover or a deductive database) a DEM.
We say a DEM possesses common sense if its
axioms define the meaning of the relations
and attributes in the object library.

In summary, the design, creation, and main-
tenance of software is fast becoming the dom-
inant cost of automation. A significant portion
of these costs is for software that provides
answers deduced from the contents of the
enterprise model.5 Many of these questions
could be answered automatically if the enter-
prise model had the common sense to answer
them!

Enterprise Modeling: 
Current Approaches

Enterprise-modeling ontologies are distinguished
by their scope and the central role of integrat-
ing multiple ontologies. The ontologies must
be able to represent concepts in the domains of
activity, time, resource, product, service, orga-
nization, goal, and policy. Further, these
ontologies must be integrated to support rea-
soning that requires the use of multiple
ontologies and support interoperability among
tools using different ontologies. For example,
the notion of manufacturability requires rea-
soning about the product properties, precondi-
tions, and effects of activities and the capabil-
ities of resources.

All ontologies consist of a vocabulary along
with some specification of the meaning or
semantics of the terminology within the
vocabulary. The various ontologies can also be
distinguished by their degree of formality in
the specification of meaning. With informal
ontologies, the definitions are expressed loose-
ly in natural language. Semiformal ontologies
provide weak axiomatizations, such as tax-
onomies, of the terminology. These ontologies
can serve as a framework for shared under-
standing among people but is often insuffi-
cient to support interoperability, and ambigu-
ity can hinder integration. Formal ontologies
define the language of the ontology, a set of

Enterprise-
modeling

ontologies
are distin-
guished by
their scope

and the 
central role 

of integrating
multiple

ontologies.
The ontologies

must be able
to represent
concepts in

the domains
of activity,

time, resource,
product, 
service, 

organization,
goal, and

policy.

Articles

112 AI MAGAZINE



Toronto Virtual Enterprise Ontology
The goal of the TOVE Project (Fox, Chionglo,
and Fadel 1993) is to create an ontology that
has the following characteristics: (1) it pro-
vides a shared terminology for the enterprise
that every application can jointly understand
and use; (2) it defines the meaning (semantics)
of each term in a precise and an unambiguous
as possible manner using first-order logic; (3) it
implements the semantics in a set of PROLOG

axioms that enable TOVE to automatically
deduce the answer to many commonsense
questions about the enterprise; and (4) it
defines a symbology for depicting a term, or
the concept constructed thereof, in a graphic
context.

The TOVE DEM currently spans knowledge
of activity, time, and causality (Gruninger and
Pinto 1995; Gruninger and Fox 1994),
resources (Fadel 1994; Fadel, Fox, and
Gruninger 1994), cost (Tham, Fox, and
Gruninger 1994), quality (Kim and Fox 1994;
Kim, Barbuceanu, and Gruninger 1995), orga-
nization structure (Fox, Barbuceanu, and
Gruninger 1995), product (Lin, Fox, and Bilgic
1996), and agility (Atefi 1997). The TOVE test
bed provides an environment for analyzing
enterprise ontologies; it provides a model of an
enterprise and tools for browsing, visualiza-
tion, simulation, and deductive queries.

Enterprise Ontology
The ENTERPRISE Project at the University of Edin-
burgh (Uschold et al. 1997) aims to provide an
environment for integrating methods and
tools for capturing and analyzing key aspects
of an enterprise based on an ontology for
enterprise modeling. This ontology (ENTERPRISE)
is semiformal; it provides a glossary of terms
expressed in a restricted and structured form of
natural language supplemented with a few for-
mal axioms.

The ENTERPRISE ontology has five top-level
classes for integrating the various aspects of an
enterprise: (1) metaontology: entity, relation-
ship, role, actor, and state of affairs; (2) activi-
ties and processes: activity, resource, plan, and
capability; (3) organization: organizational
unit, legal entity, management, and owner-
ship; (4) strategy: purpose, strategy, help to
achieve, and assumption; (5) marketing: sale,
product, vendor, customer, and market.

IDEF Ontologies
The ontologies developed at KBSI are intended
to provide a rigorous foundation for the reuse
and integration of enterprise models (Fillion et
al. 1995). Thus, the ontologies play two impor-
tant roles: (1) providing a neutral medium for

integrating modeling tools within a software
environment, and a framework within which
to interpret individual enterprise models, to
draw logical connections between models and
(2) detecting inconsistencies when integrating
models.

This emphasis on semantic integration
requires a formal axiomatization of the classes
and relations within an ENTERPRISE model. The
ontology is a first-order theory consisting of a
set of foundational theories, along with a set of
ENTERPRISE models that are extensions to these
theories, for some specific set of logical con-
stants that specify the entities within the
ENTERPRISE model. The approach has been used
to provide axiomatizations of IDEF0 and
IDEF1X.

Process-Interchange Format
The goal of the Process-Interchange Format
(PIF) Project is to develop an interchange for-
mat to support the automatic exchange of
process descriptions among a wide variety of
business-process modeling and support sys-
tems, such as work-flow tools, process simula-
tion systems, business-process reengineering
tools, and process repositories. Rather than
develop ad hoc translators for each pair of
process descriptions, PIF serves as the com-
mon format for all systems to support inter-
operability.

PIF is a formal ontology that is structured as
a core ontology plus a set of extensions known
as partially shared views (PSVs). The intuition is
that all systems agree on the definitions of
terms within the core but agree on the defini-
tions for other terms if they are defined in
common PSVs.

The PIF core ontology consists of the classes
and relations used to describe the basic ele-
ments of any process. The top-level of the
ontology defines the classes’ activity, object,
agent, and time point along with the relations
performs (over agents and activities), uses, cre-
ates, modifies (all three over activities and
objects), before (over time points), and succes-
sor (over activities).

NIST Process-Specification Language
The goal of the Process-Specification Language
(PSL) Project (Schlenoff et al. 1996) at the
National Institute of Standards and Technolo-
gy (NIST) is to create a process-specification
language to facilitate complete and correct
exchange of process information among man-
ufacturing applications. Included in these
applications are scheduling, process planning,
simulation, project management, work flow,
business-process reengineering, and product
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the responsibilities assigned to individuals for
functional and control structures, informa-
tion, and resources.

CIMOSA considers an enterprise function as a uni-
fied construct of the business user’s view of what
tasks are required to achieve a particular enter-
prise objective. The enterprise function consists
of three major sections: (1) the functional part
(which captures the objectives and constraints
as well as the relationship between input and
output), (2) the behavior part (which captures the
dynamic section of the enterprise function such
as procedural rules for flow of control), and (3)
the structural part (which specifies the relation-
ships among different levels of decomposition
within a given enterprise function).

PERA

The PURDUE REFERENCE ARCHITECTURE (PERA) was
developed as an endeavor in enterprise model-
ing for a computer-integrated manufacturing
(CIM) factory by the Purdue Laboratory for
Applied Industrial Control at Purdue Universi-
ty (Bernus, Nemes, and Williams 1996;
Williams 1991).

The functional descriptions of the tasks and
functions of the enterprise are divided into
two major streams: (1) information (including
decision, control, and information) and (2)
manufacturing, or customer service. The informa-
tion stream is initiated by the planning, sched-
uling, control, and data management require-
ments of the enterprise, whereas the
manufacturing stream is initiated by the phys-
ical production requirements of the enterprise.
On implementation, the two functional
streams are rearranged into three implementa-
tion sets of tasks and functions: (1) human
activities that are information and manufac-
turing or customer-service related, (2) informa-
tion stream activities not carried out by
humans, and (3) manufacturing and customer-
service activities not carried out by humans.

GERAM

GERAM (GENERIC ENTERPRISE REFERENCE ARCHITEC-
TURE AND METHODOLOGY) is about those meth-
ods, models, and tools that are needed to
build an integrated enterprise (Bernus,
Nemes, and Williams et al. 1996). The cover-
age of the framework spans products, enter-
prises, enterprise integration, and strategic
enterprise management, with the emphasis
on the middle two.

Enterprisewide Data Modeling
The enterprisewide data-modeling contribution
by Scheer (1989) was initiated in Germany in
the mid-1980s and undertakes to construct

realization process modeling. Although pri-
marily an ontology for processes, it lays the
foundations for the integration of ontologies
required for enterprise modeling by adopting
the following structure:

The core is the most basic, essential require-
ment inherent to all processes. Although all
processes contain core requirements, the core
requirements provide the basis for represent-
ing only the simplest of processes (for exam-
ple, time, resource, activity).

The outer core is the pervasive but not
essential requirement for describing process-
es common to most applications (for exam-
ple, temporal constraints, resource grouping,
alternative tasks).

Extensions are the groupings of related
requirements, common to some, but not all,
applications that together provide an added
function (for example, goals, intentions, orga-
nization constraints, products).

Application-specific requirements are require-
ments that are only relevant within specific
applications (for example, dynamic reschedul-
ing for the production-scheduling application).

CIMOSA

The objective of CIMOSA (COMPUTER-INTEGRATED

MANUFACTURING—OPEN-SYSTEM ARCHITECTURE)
(AMICE 93) (Bernus, Nemes, and Williams
1996) is the appropriate integration of enter-
prise operations by means of efficient informa-
tion exchange within the enterprise with the
help of information technology; further, it
defines an integrated methodology to support
all phases of a CIM system life cycle from
requirements specification through system
design, implementation, operation, and main-
tenance. This description is used to control the
enterprise operation and to plan, design, and
optimize updates of the real operation envi-
ronment. To fully model specific aspects of the
enterprise, CIMOSA defines four different views
concerned with the enterprise: (1) function, (2)
information, (3) resources, and (4) organization.

The function view describes the functional
structure required to satisfy the objectives of
the enterprise and the related control struc-
ture, that is, the rules that define the control
sequences, or the flows of actions within the
enterprise and the principles of the underlying
business processes.

The information view describes the informa-
tion required by each function.

The resource view describes the resources and
their relationship to functional and control
structures and organizational structures.

The organization view is the description of the
enterprise organizational structures, that is,
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data structures for typical functional areas
(departments), such as production, engineer-
ing, purchasing, human resources, sales and
marketing, accountancy, and office adminis-
tration, that are generally encountered in an
enterprise with the aim of supporting plan-
ning, analysis, and traditional accounting sys-
tems in general.

Scheer uses the entity-relationship model to
systematically develop the data structures for
the enterprise in terms of entities (something
that can be identified in the users’ work envi-
ronment), attributes (characteristics-properties
of an entity), and relationships (the association
of entities with one another). The temporal
(time) aspects of data structures are recognized
in a rudimentary fashion through the identifi-
cation of key attributes of entities as calendar
time related, such as date, year, and time-table-
number. The temporally dependent processes,
which are typically transaction data, are defined
by their links with the special entity type time.

Enterprisewide data modeling is then
achieved by the transformation of the data
structures into relational and network data
models to represent the data relationships
between the various functional areas of the
enterprise. An integrated database for the
modeled enterprise is formed by combining
the data structures, and this database is embed-
ded within the framework of an MIS.

Evaluating Enterprise Models
Although all the efforts described earlier seek
to create a sharable representation of the enter-
prise, there has never been a well-defined set of
criteria that these efforts should satisfy. Put
another way, how can you determine which
DEM is right for your task?5 We believe there
are six characteristics that should be used to
evaluate a DEM:

First is functional completeness: Can the DEM
represent the information necessary for a func-
tion to perform its task?

Second is generality. To what degree is the
DEM shared between diverse activities such as
engineering design and manufacturing or
design and marketing? Is the DEM specific to a
sector, such as manufacturing, or applicable to
other sectors, such as retailing and finance?

Third is efficiency. Does the DEM support
efficient reasoning, that is, space and time, or
does it require some type of transformation?

Fourth is perspicuity. Is the DEM easily under-
stood by the users so that it can be applied con-
sistently and interpreted across the enterprise?
Does the representation document itself?

Fifth is precision granularity. Is there a core set

of ontological primitives that are partitionable,
or do they overlap in meaning? Does the rep-
resentation support reasoning at various levels
of abstraction and detail?

Sixth is minimality. Does the DEM contain
the minimum number of objects (that is, terms
or vocabulary) necessary (Gruber 1993).

The problem is, How are these criteria made
operational? We introduce the concept of a
DEM’s competence (Gruninger and Fox 1994).
Given a properly instantiated model of an
enterprise and an accompanying theorem
prover (perhaps PROLOG or a deductive data-
base), the competence of a DEM is the set of
queries that it can answer. Ideally, the compe-
tency questions should be defined in a strati-
fied manner, with higher-level questions
requiring the solution of lower-level questions.
Another view of competency is that it evalu-
ates the expressiveness of the ontology that is
required to represent the competency ques-
tions and characterize their solutions.6

Using the concept of competency, we can
determine how well a particular DEM satisfies
them, as follows:

The functional completeness of a DEM is
determined by its competency, that is, the set
of queries it can answer with a properly instan-
tiated model. Given a particular function
(application), its enterprise-modeling needs
can be specified as a set of queries. If these
queries can be reduced to the set of competen-
cy questions specified for the chosen DEM,
then the DEM is sufficient to meet the model-
ing needs of the application.7

The generality of a DEM can be determined
by evaluating whether the union of queries
from a broad set of functions, perhaps drawn
from different sectors, is reducible to a DEM’s
competency.

Given that a theorem prover is the deduc-
tion mechanism used to answer questions, the
efficiency of a representation can be defined by
the number of logical inferences per second
required to answer a query. However, experi-
ence has demonstrated that there is more than
one way to represent the same knowledge, and
each representation does not have the same
complexity when answering a specific class of
questions. Furthermore, the deductive capabil-
ity provided with the DEM affects the store
versus compute trade-off. If the deduction
mechanisms are taken advantage of, certain
concepts can be computed on demand rather
than stored explicitly. By computing the aver-
age complexity of the competency questions
of the DEM, we can estimate its efficiency.

The perspicuity of a DEM is enhanced by its
axiomatization. That is, by providing formal
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Fox, and Greenberg 1985). An activity is the
basic transformational action primitive with
which processes and operations with duration
can be represented. Enabling states define the
preconditions for the activity (what has to be
true of the world for the activity to be per-
formed) and cause state-define effects (what is
true of the world once the activity has been
completed).

An activity, along with its enabling and
caused states, is called an activity cluster (figure
2). The state tree linked by an enables relation
to an activity specifies what has to be true for
the activity to be performed. The state tree
linked to an activity by a causes relation
defines what is true of the world once the
activity has been completed.

TOVE primitive activities are resource based;
that is, their preconditions and effects are para-
meterized by resource terms. We capture this
relationship with the following relations:
uses(r, a), consumes(r, a), modifies(r, a), and pro-
duces(r, a). Intuitively, a resource is used and
released by an activity if none of the properties
of a resource are changed when the activity is
successfully terminated, and the resource is
released. A resource is consumed or produced
if some property of the resource is changed
after termination of the activity, including the
existence and quantity of the resource or some
arbitrary property such as color. Thus,
consume(r, a) signifies that a resource is to be
used up by the activity and will not exist once
the activity is completed, and produce(r, a) sig-
nifies that a resource, which did not exist prior
to the performance of the activity, has been
created by the activity.

Different classes of aggregate activity are
defined using different constraints on the
occurrence of the subactivities, including
sequences of actions, conditional actions
(which are triggered or performed only under
certain conditions), and iterated actions.

Activity-State-Time: Ontology
Within TOVE, we have adopted the situation
calculus in Reiter (1991) as the foundational
theory to provide a semantics to the ontologies
of activity, state, and time. In this role, the
foundational theory provides the framework
in which we can compare different intuitions
and alternative formalizations of these intu-
itions. Also, the axioms in the foundational
theory serve as the nucleus of any implemen-
tation of the deductive queries that are sup-
ported by the ontologies.

The situation calculus has predicates for
actions, situations, time points, and fluents.
The intuition behind the situation calculus is

definitions of objects and their relations and
attributes, we make it possible for users to under-
stand their intended meaning, although the def-
initions do not guarantee that programs that
access a DEM will interpret the results correctly.

The precision of a DEM refers to what extent
the definitions of concepts are distinct (Sowa
1995). Given that we have formal definitions,
we can determine whether a concept subsumes
another or what concepts lie at their intersec-
tion or union (generalization). Granularity
refers to the capability of representing con-
cepts at differing levels of abstraction.
Whether a DEM is precise enough or allows for
the capability of abstraction should be deter-
mined from the competency questions of the
DEM. Conversely, an application specifies its
precision and granularity requirements in the
form of queries. If these queries can be reduced
to the DEM’s competency questions, then the
DEM is sufficient.

Finally, the minimality of a DEM can be
determined, using the axioms, by proving that
for every object in the DEM, there is no other
object that is logically equivalent.

The Toronto Virtual Enterprise
Deductive Enterprise Model

In this section, we describe a portion of the
TOVE DEM being developed at the University
of Toronto. Our approach to engineering the
TOVE DEM begins with defining its competen-
cy, which is in the form of questions that the
DEM must be able to answer. The second step
is to define its terminology: its objects, attrib-
utes, and relations. The third step is to specify
the definitions and constraints on the termi-
nology, where possible. The specifications are
represented in first-order logic and implement-
ed in PROLOG. Finally, we test the competency
of the DEM by proving the competency ques-
tions with the PROLOG axioms.

Figure 1 shows the subsets of the TOVE
DEM, that is, ontologies. In this section, we
give an example of a small ontology for
resource spoilage. We first describe a portion of
TOVE’s activity-state ontology and the seman-
tic foundation on which it is built, followed by
the competency of a resource spoilage ontol-
ogy, its terminology, and axioms.

Activity-State-Time: 
Foundational Theory
At the heart of the TOVE activity ontology
lies the representation of a primitive activity
and its corresponding enabling and caused
states (Fox, Chionglo, and Fadel 1993; Sathi,
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that there is an initial situation (denoted by the
constant S0) and that the world changes from
one situation to another when actions are per-
formed. There is a function do(a, s), which is
the name of situation that results from per-
forming action a in situation s, and there is a
predicate poss(a, s) that is true whenever an
action a can be performed in situation s. The
structure of situations is that of a tree; two dif-
ferent sequences of actions lead to different sit-
uations. Thus, each branch that starts in the
initial situation can be understood as a hypo-
thetical future. The tree structure of the situa-
tion calculus shows all possible ways in which
the events in the world can unfold. Therefore,
any arbitrary sequence of actions identifies a
branch in the tree of situations. For example, in
figure 3, the actions A1, A2, A3, and A4 occur
along one branch, and the actions A2, A4, and
A5 occur along another branch. In this way, the
notion of hypothetical branches allows us to
formalize the analysis of what-if scenarios.

A fluent is a relation or function whose val-
ue might change between situations. To
define the evaluation of the truth value of a
sentence in a situation, the predicate holds(f,
s) is used to represent the fact that some flu-
ent f is true in situation s. For example, to rep-
resent that the substate consume wire is true in
a situation s, we would write

holds(consumes(wire, fabricate_plug_on_wire),
s) . (2)

One important property that must be for-
malized in the activity ontology is the notion
of causality, that is, the specification of what
holds in the world after performing some
action. As part of the logical specification of
the activity ontology, we define successor state
axioms that specify how actions change the
value of a fluent. These axioms provide a com-
plete characterization of the value of a fluent
after performing any action. Thus, if we are
given a set of action occurrences, we can deter-
mine the value of a fluent at any time point
(that is, temporal projection) by first finding
the situation containing the time point and
then using the successor state axioms to eval-
uate the fluent in this situation.

The foundational theory for TOVE also
includes the extension of the situation calcu-
lus in Pinto and Reiter (1993) in which one
branch of the situation tree is selected to
describe the evolution of the world as it actu-
ally unfolds, and time points are associated
with the start and end of each situation in a
branch. The predicate actual specifies those sit-
uations that are in the actual branch, and the
predicate occurs(a, s) is defined to represent
actions performed along the actual branch,
and occursT(a, t) represents that action a occurs
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Figure 1. Toronto Virtual Enterprise Ontologies.
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actual. For example, suppose we want to repre-
sent the constraint that no spoiled food is
allowed. We cannot represent this constraint
as a state constraint, which must be satisfied in
all situations, for example,

(∀ r, s) ¬holds(spoiled(r), s)  , (3)

because situations can exist where spoilage
occurs; however, we do not want spoilage to
occur. Using the notion of actual branch, we
can represent this constraint as

(∀ r, s) actual(s) ⊃ ¬ holds(spoiled(r), s)  , (4)

which allows spoilage on hypothetical branch-
es but does not allow spoilage on actual
branches. This example uses the foundational
theory of an ontology (in this case, situation
calculus) to express alternative formalizations
and then decide which one is consistent with
our intuitions.

We can represent the occurrence of spoilage
as

occursT(terminate(a), t) ∧ produces(a, r) ∧
shelf_life(r, d) ⊃ occursT(spoilage(r), t + d)  (5)

along with the axiom for the fluent spoiled,
which states that spoiled(r) is only achieved by
the action spoilage(r), and there is no action
that can falsify spoiled(r) once it has been
achieved:

(∀ a, r, s) holds(spoiled(r), do(a, s)) ≡
(¬holds(spoiled(r), s) ∧ a = spoilage(r)) ∨
holds(spoiled(r), s)  . (6)

In addition, we have the following axiom for
the preconditions of all activities that con-
sume some resource r, which states that the
resource cannot be spoiled if it is consumed by
the activity:

(∀ a, r, s) Poss(a(r), s) ⊃ ¬ holds(spoiled(r), s) . (7)

If we were to use the occurrence axiom in equa-

at time t on the actual branch. For example, in
figure 3, the actions A1, A2, A3, and A4 occur on
the actual branch.

Example Ontology: Resource Spoilage
Consider an ontology that supports reasoning
about the spoilage of perishable products. Giv-
en products with code age (that is, shelf life)
and spoilage limits, we informally define the
competency of the ontology to include, Will
shipment-10 of oranges spoil if they are not
shipped before Friday? Is any milk spoiled by
Wednesday? If so, how much?

We introduce the following terminology:
First is spoiled(r)—Resource r is spoiled. Second
is shelf_life(r,d)—Resource r has d time units
before it is spoiled. Third is spoilage(r)—An
action creates spoilage in resource r.

Spoilage is intuitively characterized by the
following properties: An event occurs at some
(possibly fixed) time after production of a
resource. The effects of this event change some
fluents for the resource such that some action
that required the resource and that was former-
ly possible is no longer possible. This event is
preventable; that is, we can perform other
actions whose effects falsify the preconditions
for the spoilage event and, thus, prevent it
from happening. The effects of the event are
not repairable; that is, there are no actions that
can reachieve the fluents that are established
by the spoilage event. These intuitions infor-
mally capture the design decisions for repre-
senting spoilage; the axioms in the DEM must
capture all these intuitions.

Using the notion of an actual line, we can
reason about hypothetical branches where we
allow constraints to be violated but enforce
these constraints on the actual line, so that
branches that violate the constraints cannot be
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Figure 2. Activity Cluster.
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tion 7, the action spoilage(r)would not be pre-
ventable. To axiomatize preventable occur-
rences, we need to use the following sentence:

occursT(terminate(a), t) ∧ produces(a, r) ∧
shelf_life(r, d) ∧ PossT(spoilage(r), t + D) ⊃
occursT(spoilage(r), t + d)  . (8)

We would then include precondition axioms
for spoilage(r), such as

Poss(spoilage(r), s) ≡ holds(rp(r, q), s) ∧ q > 0
∧ ¬ holds(frozen(r), s)  , (9)

so that spoilage is possible iff there is a nonzero
amount of resource that exists, and it is not
frozen. In this case, the only way to prevent
spoilage is to either consume the resource or
freeze it.

Example Queries
Using our foundational theory (that is, the sit-
uation calculus), our activity-time ontology,
and our theory of spoilage, we can answer the
following competency questions for spoilage:
The queries would be typed using a natural
language interface (NLI). The equations are the
translated form of the queries that the NLI
would output to the DEM.

Given some initial state, which resources are
perishable?

(∃ r, s) S0 < s ∧ poss(spoilage(r), s)  . (10) 

Given a schedule, will any resources spoil?
That is, does a situation exist during the per-
formance of A in which spoilage occurs for
some resource?

(∀ s1, s2) Do(A, s1, s2) ⊃ (∃ r, s) s1 < s < s2 ∧
occurs(spoilage(r), s)  . (11)

Given some scenario of events, when will a
particular resource spoil?

(∀ s1, s2) Do(A, s1, s2) ⊃ (∃ s, t) s1 < s < s2 ∧
occurs(spoilage(R), s) ∧ start(s, t)  . (12)

Is it possible to prevent the spoilage of some
resource? That is, if we are given a scenario in
which spoilage might occur, does an alterna-
tive scenario exist in which spoilage does not
occur?

((∀ s1, s2) Do(A, s1, s2) ⊃ (∃ s) s1 < s < s2 ∧
occurs(spoilage(R), s)) ⊃ ((∃ a) subaction(a, A)
∧ ((∀ s1, s2) Do(A, s1, s2) ⊃ ¬(∃ s) s1 <
do(spoilage(R), s) < s2)  . (13)

Conclusions
The drive for more agile enterprises requires a
degree of integration that is not possible with-
out the use of a sophisticated information
infrastructure. At the core of this infrastructure
lies an enterprise model. Efforts are under way
to create GEMs, whose use significantly
reduces the time to design and implement
enterprise models. More recently, DEMs have
been developed that play a more active role in
the support of enterprise operations by deduc-
ing answers to commonly asked questions.
DEMs have the potential for substantially
reducing the MIS backlog.
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Notes
1. In fact, the importance of enterprise modeling was
recognized by industry’s decision to create a parallel
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organization to the Object Management Group to
focus on the definition of standard business objects.

2. See Spurr et al. (1994) for a view of reengineering
tools.

3. Given a relation works-for(Supervisor, Supervisee),
then the SQL query would be (SELECT Supervisor
FROM works-for WHERE Supervisee = Joe).

4. A relational database cannot support commonsense
queries directly. Instead, the commonsense query
would have to be specified as a series of factual queries
containing one or more JOINs combined with
SELECTs, which is equivalent to performing deduc-
tion. The lack of a commonsense deductive capability
forces users to spend significant resources on program-
ming each new report or function that is required.

5. Because a generic enterprise model (GEM) is a sub-
set of a deductive enterprise model (DEM), it does
not contain the axioms; we only refer to DEMs from
here on.

6. These competency questions do not generate
ontological commitments; rather, they are used to
evaluate the ontological commitments that have
been made.

7. By reducible, we mean the questions can be rewrit-
ten using the objects provided by the chosen deduc-
tive enterprise model.
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