
1

COOL: A Language for Describing Coordination in Multi Agent
Systems

Mihai Barbuceanu andMark S. Fox
Enterprise Integration Laboratory,

 Department of Industrial Engineering, University of Toronto,
4 Taddle Creek Road, Rosebrugh Building, Toronto, Ontario, M5S 1A4

 email:{mihai, msf}@ie.utoronto.ca

Abstract
Agent interaction takes place at several levels. Current work in the
ARPA Knowledge Sharing Effort has addressed the information
content level by the KIF language and the intentional level by the
KQML language. In this paper we address the coordination level by
means of our Coordination Language (COOL) that relies on speech
act based communication, but integrates it in a structured conversa-
tion framework that captures the coordination mechanisms agents
use when working together. We are currently using this language (i)
to represent coordination mechanisms for the supply chain of man-
ufacturing enterprises modeled as intelligent agents and (ii) as an
environment for designing and validating coordination protocols
for multi-agent systems. This paper describes the basic elements of
this language: conversation objects, conversation rules, error recov-
ery rules, continuation rules, conversation nesting. The actual
COOL source code and a running trace for the n-queens problem
are presented in the Appendix.

Topic areas: Coordination, Intelligent agents in enterprise integra-
tion

1 Introduction

Coordinating the behavior of autonomous intelligent agents is a major concern of many
application domains. Consider for example the problem of managing the supply chain of a
manufacturing enterprise. The supply chain is a world-wide network of suppliers, facto-
ries, warehouses, distribution centres and retailers through which raw materials are
acquired, transformed into products and delivered to customers. In order to operate effi-
ciently, supply chain functions must work in a coordinated manner. But the dynamics of
the enterprise and of the world market make this difficult: exchange rates unpredictably go
up and down, political situations change overnight, customers change or cancel orders,
materials do not arrive on time, production facilities fail, workers are ill, etc. causing devi-
ations from plan. In many cases, these events can not be dealt with locally, i.e. within the
scope of a single supply chain “agent”, requiring several agents to coordinate in order to

2

revise plans, schedules or decisions. In the manufacturing domain, the agility with which
the supply chain is managed at the (short term) tactical and operational levels in order to
enable timely dissemination of information, accurate coordination of decisions and man-
agement of actions among people and systems, is what ultimately determines the efficient
achievement of enterprise goals and the viability of the enterprise on the world market.

Our research addresses coordination problems in the supply chain by organizing the sup-
ply chain as a network of cooperating, intelligent agents, [9, 15, 13] each performing one
or more supply chain functions, and each coordinating their actions with other agents. Our
focus is on supporting the construction of supply chain intelligent agent systems in a man-
ner that guarantees that agents use the best communication and coordination mechanisms
available with minimal programming effort on the developers’ side. We achieve this goal
(i) by developing communication and coordination tools allowing agents to cooperatively
manage change and cooperatively reason to solve problems, (ii) developing ontologies
that semantically unify agent communication, (iii) developing intelligent information
infrastructures that keep agents consistently aware of relevant information and (iv) pack-
aging the above theories into agent development tools that ensure that agents are able to
reuse standardized coordination and reasoning mechanisms, relieving developers from the
tedious process of implementing agents from scratch.

One major ingredient that we use in our work is an Agent Communcation Language
(ACL) produced by the ARPA Knowledge Sharing Effort [10]. This language, known as
Knowledge Query and Manipulation Language (KQML) [2, 3], provides a message for-
mat and message handling protocol supporting run-time knowledge sharing and interac-
tion among agents. Interaction is however more than exchanging messages. One aspect of
interaction that we strongly require refers to coordination protocols, that is the shared con-
ventions about message exchange that agents use when working together in a coordinated
fashion. The goal of this paper is to present a language for describing such coordination
protocols which makes use of KQML (or KQML-type languages) at the communication
level. The language, named COOL (for COOrdination Language), has been implemented
and is currenly used in our distributed supply chain project to model coordination mecha-
nisms among agents. The paper presents the major elements of the language, including
conversation objects, conversation rules, error recovery rules, continuation rules, conver-
sation nesting. The appendix provides a COOL specification of the n-queens problem and
a trace of how the problem is solved by coordination among agents (queens).

2 Levels of Agent Interaction

Agent interaction takes place at several levels. The first level is concerned with the infor-
mation content communicated among agents. A piece of information communicated at
this level may be a proposition (fact) like “(produce 200 widgets)”. The ARPA Knowl-
edge Sharing Effort has produced the KIF [5] logic language for describing the informa-
tion content transmitted and the conceptual vocabularies (or ontologies [6])
communicating agents must share in order to understand each other.

3

The second level specifies theintentions of agents. The same information content can be
communicated with different intentions. For example:

• (ask (produce 200 widgets)) - the sender asks the receiver if the mentioned fact is true,
• (tell (produce 200 widgets)) - the sender communicates a belief of his to the receiver,
• (achieve (produce 200 widgets)) - the sender requests the receiver to make the fact one

of his beliefs
• (deny (produce 200 widgets)) - the sender communicates that a fact is no longer

believed.

KQML [2, 3] has been designed as a universal language for expressing such intentions
such that all agents would interpret them identically. KQML supports communication
through explicit linguistic actions, calledperformatives. As such, KQML relies on the
speech act [12] framework developed by philosophers and linguists to account for human
communication. Work is currently being done [8] for endowing KQML with formal
semantics based on the speech-act theory as formalized and extended within the fields of
Computational Linguistics and Artificial Intelligence [1].

The third level is concerned with theconventions that agents share when interacting by
exchanging messages. The existence of shared conventions makes it possible for agents to
coordinate [7, 17] in complex ways, e.g. by carying out negotiations [14, 18] about their
goals and actions. As an example, consider the supply chain of our TOVE virtual manu-
facturing enterprise [4, 11] as a multi-agent system. The Order Acquisition Agent interacts
with the customer and acquires an order for 200 lamps with a due date for 28 sept 94. It
sends this as aproposal to the Logistics Agent. Knowing that Logistics can only answer
with accepting, rejecting or counter-proposing, Order Acquisition is able to check that the
actual response is one of these and carry out a corrective dialogue with Logistics if this is
not the case or if other events occur (such as delays or message shuffling). If Logistics
answers with a counter-proposal (e.g. 200 lamps with due date 15 oct 94), Order Acquisi-
tion may use knowledge about acceptable trade-offs and negociate with Logistics an
amount and a due-date that can be achieved and satisfies the customer. In its turn, upon
receiving the order proposal, Logistics will start negotiations with the Scheduling agent to
determine the feasibility of scheduling the production of the order and with the Transpor-
tation agent to determine feasibility of the delivery date.

This is the level of interaction we are supporting with the COOL language described in
this paper.

Finally, a fourth level of interaction is concerned with howagents are modeled, (e.g.
which are their beliefs, goals, authorities etc. in the organizations they are part of). We
address this aspect by building organizational models and representing the agents as com-
ponents of these organizations. This work will be reported elsewhere.

3 COOL: A Language Layer for Defining Coordination Models And Protocols

In any multi-agent system, the coordination level must be explicitely captured in order to
have agents cooperate in non-trivial ways. We model the coordination level by means of a

4

coordination language that is used in particular for describing coordination in the supply
chain of the TOVE enterprise and in general as a coordination specification language for
any multi-agent system.

3.1 Basic components

We model a coordination activity as a conversation among two or more agents, specified
by means of a finite state machine (FSM):

• The states of the FSM represent thestates a conversation can be in. There is a distin-
guishedinitial state any conversation starts in, and severalterminating states that when
reached signal the termination of the conversation.

• The messages exchanged are represented asperformatives (speech acts) of the agent
communication language. The content level of performatives is not part of the negotia-
tion protocol, but determines the course of an individual negotiation as it is used in the
decision-making of agents.

• A set ofconversation rules specify how an agent in a given state receives a messages of
specified type, does local actions (e.g. updating local data), sends out messages, and
switches to another state.

• A set oferror recovery rules specify how incompatibilities among the state of a conver-
sation and the incoming messages are handled.

• A set ofcontinuation rules specify how agents accept requests for new conversations or
select a conversation to continue from among the existing ones.

• Conversation classes specify the states, conversation rules and error rules that are spe-
cific to a type of conversation. An agent has several conversation classes it can use
when communicating with other agents.

• Actual conversations instantiate conversation classes and are created whenever agents
engage in communication.

These elements are described in detail in the remainder of this section.

3.2 Speech acts

Agents cooperate and coordinate through communication. We assume the existence of a
standard set of speech acts that define the communicative actions available within an orga-
nization. These speech acts are represented as performatives of the agent communication
language. To the standard speech acts provided by our agent communication language -
KQML - we have added a number of higher order speech acts like:

• Propose. This is used to propose to an agent a subgoal to achieve. For example:
(propose :content (produce (widgets 200)(time “19-sep-94”))).

• Counter-Propose. A counter proposal is another subgoal that partially satisfies the ini-
tial goal of a propose. The use of this speech act can result in a sequence of counter-
proposals from both the original proposer and the respondent. An example is:

5

(counter-propose :content (produce (widgets 200)(time “20-sep-
94”))) .

• Accept and Reject. These are used to signal acceptance, respectively rejection of a pro-
posal or counter-proposal. Rejection starts a new negotiation phase.

• Cancel. This cancels a previously accepted proposal or counter-proposal.

• Commit. Positive confirmation that an agent puts itself in a state that will satisfy a pro-
posal; also ends a negotiation or renegotiation phase.

• De-Commit. Cancellation of a previous Commit.

• Satisfy. An agent announces that a requested goal has been achieved. For example:
(satisfy :content (counter-propose :content (produce (widgets
200)(time “20-sep-94”)))

• Fail. An agent informs that execution of a committed goal has failed.

3.3 FSM specification

The models of coordination involving speech acts like the above ones are described with
finite state machines. An example is shown in figure 1.

FIGURE 1. State transitions for negotiation.

Figure 1 uses the notation <received speech act.> / <sent speech act> to label edges in the
diagram. When the conversation is in a given state and if a speech act is received, the
agent performs local processing (not shown), sends out the shown speech act and switches
to the state pointed to by the edge. State 1 is the initial state and states 6, 7 and 8 are final
states. A conversation starts in state 1 with the agent receiving a speech act. If it is a pro-
posal, the agent switches to state 2. In this state it may reject the proposal, or issue a
counter-proposal. If a counter-proposal is issued (state 3), it may be accepted by the inter-
locutor, or rejected. If it is rejected, another propose counter-propose cycle may start. If a

propose/

/reject

counter-propose/

/counter-
propose

counter-

reject/

1 2

3

4
/accept

6

/satisfy/de-commit

/fail

5

7 8

/acceptpropose/

/cancell

/commit

6

(counter-) proposal is finally accepted, the conversation switches to state 4. Here the agent
may change its mind (cancel) or commit to achieving the subgoal. In state 5, the agent
may report satisfaction of commitment, failure or unilateral de-commitment.

This example of conversation - and coordination - model describes message exchange
from the viewpoint of the agent that is satisfying requests from other agents. From the
viewpoint of the agent that makes the request in the first place the conversation model will
be different.

Conversation models of this kind are hence described from the viewpoint of one partici-
pating agent. The other participating agents have their own models and this poses difficult
problems for the verification/validation of conversations (dead-locks, message shuffling,
etc.). VonMartial [16] describes techniques for designing consistent asynchronous conver-
sations described by FSMs.

3.4 Conversation rules

Conversation rules specify agents’ reasoning for choosing the next edge in the diagram,
what internal processing they do when switching states and what messages they send out.
A rule example is the following:

(def-conversation-rule r1

:current-state 2

:received

 (propose :sender ?initiator :content (produce (?what ?amount)(time
?date)))

:such-that

(and (achievable (produce ?what ?amount))

 (not-achievable (time ?date))

 (possible-alternative (time ?date) (time ?date1)))

:next-state 3

:transmit (counter-propose :content (produce (?what ?amount) (time
?date1))))

Rules have local variables that are unified when rules are applied. Above,?what ,
?amount , ?date and ?date1 are such variables. Besides these local variables, there
exists a persistent conversation environment that provides persistent variables that can be
used to transmit values between rule firings. For example, the initiator of a conversation is
stored in such a variable (?initiator above) and can be used in rules.

To test for incoming messages, conversation rules provide constructs for testing the first
message in the queue - considering the queue ordered - or to look for messages anywhere
in the queue - considering the queue as a set. The latter is useful as often the communica-
tion services can not deliver messages in the order they were sent. It is also possible to
check in a rule for the ordered or unordered occurence of more than one message. This

7

allows for better handling of messages from several agents in conversations involving
more than two participants.

3.5 Error recovery rules

A situation that can easily occur is that the current message received in a conversation can
not be handled by any of the rules in the current state. This signals an error that can have
many causes - message delays, destroyed message order, lost messages, wrong messages
sent out, etc.

Agents cope with this situation at two levels. First, they can use more elaborate conversa-
tion structure and rules that take such possibilities into account. Second, they can invoke a
set of error recovery rules associated with each conversation. Error recovery rules may
perform any action deemed appropriate, such as discarding inputs, initiating clarification
conversations with the interlocutor, changing the state of the conversation, or just report-
ing the error and terminating the conversation. The advantage of error recovery rules is
that they allow complex error recovery policies to be explicitly designed and (re)used
among many agents and conversations.

3.6 Defining conversations

We distinguish among conversationclasses andactual conversations. A conversation
class specifies the states, variables, conversation rules, error recovery rules and control
mechanisms that apply these kinds of rules. An actual conversation is an instance of a con-
versation class. There can be many actual conversations instantiating the same conversa-
tion class (for different agents and different states and messages exchanged).

The linguistic construct we use to define conversation-classes bundles together the above
elements. An example conversation class definition is:

(def-conversation-class Cnv-1

:initiator ?initiator

:respondent ?respondent

:variables (?v1 ?v2)

:initial-state s0

:final-states (s5 s7)

:conversation-rules ((s0 r1 r2) ...)

:conversation-rule-applier CRA-1

:error-rules (e1 e2 ...)

:error-rule-applier ERA-1)

In this definition,:initiator and:respondent are slots holding the names (and pos-
sibly initial values) of distinguished persistent variables.:conversation-rules and
:error-rules hold the corresponding sets of rules governing the conversation (note that
conversation rules are indexed on the state they apply to). :conversation-rule-

8

applier and :error-rule-applier hold the functions that apply the two kinds of
rules.

3.7 Initiating conversations

When an agent wishes to initiate a conversation in which it will have the initiative, it cre-
ates an instance of a conversation class. When the instance is executed, messages will be
sent and received according to the conversation class. When a message is sent to an agent,
the sent performative must contain a :conversation slot (an extension to KQML) that
contains a conversation name that is shared by the communicating agents. For example,
agenta2 may send to agenta1 the following message:

(propose :sender a2

:receiver a1

:content (produce widget 100)

:reply-with r1

:conversation c1).

Agenta2 has an actual conversation named c1 that is managed by the rules of one ofa2 ’s
conversation classes. Ifa1 has an actual conversation namedc1 , then the rules in the con-
versation class thata1 associates to itsc1 actual conversation will be used. If receivera1
has no conversationc1 , the message is interpreted as a request for a new conversation
made bya2. In this case,a1 must retrieve and instantiate a conversation class to handle
the communication.

Our current mechanism for retrieving the conversation class that will manage a request for
a new conversation is based on two elements. First, any message that is a request for con-
versation must have an aditional slot :intent slot (another - and last - extension to
KQML) that contains a description of the intent of the requesting agent. The receiving
agent tries to find a conversation class that matches the expressed :intent of the sender.
This is done by having conversation classes specify an :intent-test predicate that will
be used with the actual intent as argument. If the test determines that a conversation class
can serve the :intent of a request, then the second element is used. This is a verification
that in the initial state of the selected conversation class there exists at least one rule that
can be triggered by the received message. If this is the case, a new (actual) conversation
controlled by the retrieved conversation class is created and the receiver agent will use it
as its conversation with the sender.

3.8 Interrupting conversations

The need to interrupt ongoing conversations arises from two major reasons. First, an agent
a that has an ongoing conversation with an agentb may need sometime during that con-
versation to start a new conversation with an agentc . For example this may be required to
acquire information, to achieve a goal or to correct an error. Second, an agenta having a
conversation with an agentb may be interrupted during this conversation by a request
from an agentc .

9

To allow for these situations, we let each agent have a set of ongoing conversations. When
an agent initiates a new conversation, the new conversation object is added to this set.
When a conversation has to be interrupted because another conversation must take place,
the old conversation is suspended, and the system marks the suspended conversation as
waiting for the new conversation to complete. This creates dependency records among
conversations that are used when selecting the next conversation to work on. Because con-
versation objects can be inspected, the states and variable values of a conversation that
another conversation waits for can be used by the waiting conversation when the latter is
resumed.

For example, consider again the supply chain of an enterprise organized as a multi-agent
system. The Order Acquisition Agent may have a conversation with the Logistics Agent
about a new order. The Logistics Agent may temporarily suspend this conversation to start
a conversation with the Scheduling Agent to inquire about the feasibility of a due date.
Having obtained this information, the Logistics Agent will resume the interrupted conver-
sation with Order Acquisition.

3.9 Continuation rules

The next element of the framework is the ability of agents to specify their policies of
selecting the next conversation to work on. Since an agent can have many ongoing conver-
sations (some may be waiting for input, some may be waiting for other conversations to
terminate, others may be ready for execution), the way it selects conversations reflects its
priorities in coordination and problem-solving.

The mechanism we use to specify these policies is continuation rules. Unlike conversation
rules and error rules, which are attached on conversation classes, continuation rules select
from among the conversations of an agent and hence are attached on agents.

Continuation rules perform two functions. First, they test the input queue of the agent and
apply the conversation class recognition mechanism (section 3.7) to initiate new conversa-
tions. Second, they test the data base of ongoing conversations and select one existing
conversation to execute.

Which of these two actions has priority (serving new requests versus continuing existing
conversations) and which request or conversation is actually selected, is represented in the
set of continuation rules associated to the agent. Our agent definition mechanism allows
the specification, for each agent, of both the set of continuation rules and the continuation
rule applier.

For illustration, the following continuation rule specifies that a new conversation request
is served if there exists a conversation class that accepts the first message in the agent
queue:

(def-continuation-rule cont-1

:input-queue-test

10

(lambda(queue)

 (if queue (exists-conv-class-initially-accepting (first queue))
nil))).

3.10 Defining agents

The last element of the framework is a simulation environment that allows defining the
agents in the system, their conversation classes, actual conversations and continuation
rules. A number of functions are provided that allow agent systems thus defined to be sim-
ulated by managing message passing and the activation of individual agents. The n-queens
solution in the Appendix uses this facility.

4 Concluding remarks

Agent interaction takes place at several levels. Current work has addressed the informa-
tion content level by the KIF language, the intentional level by the KQML language (both
outcomes of the ARPA Knowledge Sharing Effort). We propose to address the coordina-
tion level by the COOL language that relies on speech act based communication, but inte-
grates it in a structured conversation framework that captures the coordination
mechanisms agent used when working together. COOL provides constructs for describing:

• structured conversations (as finite state machines),
• conversation rules for describing the state transitions within a conversation,
• error rules for specifying corrective actions to take when unexpected, delayed or other-

wise perturbed communication occurs,
• continuation rules for allowing agents to define their own policies for selecting which

conversation to continue,
• a mechanism for managing multiple conversations of a single agent, by maintaining

dependencies among conversations (such as having one conversation wait for another
to reach a given status).

We are currently using this language to represent coordination mechanisms for the supply
chain of manufacturing enterprises modeled as intelligent agents. Because of the simula-
tion capabilities of our implementation, we are also using the language as an environment
for designing and validating coordination protocols, without having to build actual agent
systems for this purpose.

The Appendix presents the actual COOL source code and a running trace for the n-queens
problem described as a coordination problem in the sense of our language.

5 Acknowledgements

This research is supported, in part, by the Manufacturing Research Corporation of
Ontario, Natural Science and Engineering Research Council, Digital Equipment Corp.,
Micro Electronics and Computer Research Corp., Spar Aerospace, Carnegie Group and
Quintus Corp.

11

6 References

1. Cohen, P., Morgan, J., Pollack, M. (editors) Intentions in Communication, MIT Press
Cambridge, MA, 1990.

2. Finin, T., et al. Specification of the KQML Agent Communication Language, The
DARPA Knowledge Sharing Initiative, External Interfaces Working Group, 1992.

3. Finin, T., Fritzson, R., McKay, D. and McEntire, R., KQML - An Information and
Knowledge Exchange Protocol, in Kazuhiro Fuchi and Toshio Yokoi, editors, Knowledge
Building and Knowledge Sharing, Ohmsha and IOS Press, 1994.

4. Fox, M. S. A Common-Sense Model of the Enterprise, Proc. of Industrial Engineering
Research Conference, 1993.

5. Genesereth, M.R., Fikes, R.E. Knowledge Interchange Format, Version 3.0, Reference
Manual, Computer Science Department, Stanford University, Technical Report Logic-92-
1.

6. Gruber, T. R., Toward principles for the design of ontologies used for knowledge shar-
ing, Report KSL 93-04, Stanford University, august 1993.

7. Jennings, N., R., Commitments and conventions: The foundation of coordination in
multi-agent systems, The Knowledge Engineering Review, vol. 8:3, pp 223-250, 1993.

8. Labrou, Y. and Finin, T., A Semantics Approach for KQML - A General Purpose Com-
munication Language for Software Agents, 1993.

9. Pan, J.Y.C., Tenenbaum, J. M. An Intelligent Agent Framework for Enterprise Integra-
tion, IEEE Transactions on Systems, Man and Cybernetics, 21, 6, pp. 1391-1408, 1991.

10. Patil, R., Fikes, R., Patel-Schneider, P., McKay, D., Finin, T., Gruber, T., and Neches,
R. The ARPA Knowledge Sharing Effort: Progress report. In B. Nebel, C. Rich, and W.
Swartout, editors, Principles of Knowledge Representation and Reasoning: Proceedings of
the Third International Conference (KR’92), San Mateo, CA, Nov. 1992. Morgan Kauf-
mann.

11. Roboam, M., Fox, M. S. Enterprise Management Network Architecture, A Tool for
Manufacturing Enterprise Integration, Artificial Intelligence Applications in Manufactur-
ing, AAAI Press/MIT Press, 1992.

12. Searle, J. Speech Acts, Cambridge University Press, Cambridge, UK, 1969.

13. Shoham, Y. Agent-Oriented Programming, Artificial Intelligence 60 (1993) pp 51-92.

14. Sycara, K., Multi-agent compromise via negotiation, In Les Gasser and Michael N.
Huhns, editors, Distributed Artificiall Intelligence, Volume II, pp. 119-137, Pitman Pub-
lishing, London, 1989

15. Tenenbaum, J. M., Gruber, T. R., Weber, J.C. Lessons from SHADE and PACT, Enter-
prise Modeling and Integration, C. Petrie (ed), McGraw-Hill 1992.

16. vonMartial, F., Coordinating Plans of Autonomous Agents, Lecture Notes in Artificial
Intelligence 610, Springer Verlag Berlin Heidelberg, 1992.

12

17. Winograd, T. and Flores, F. (1986) Understanding Computers and Cognition: A New
Foundation for Design, Ablex Publishers, 1986.

18. Zlotkin, G., Rosenschein, J.S. Negotiation and task sharing among autonomous agents
in cooperative domains, Proceedings of IJCAI-89, pp. 912-917, Detroit, MI, aug. 1989

7 Appendix: COOL solution to the n queens problem

;;; Notes:
;;; - assume 4 queens
;;; - ?x, ?y, etc. denote variables
;;; - (?(function-name arg1 arg2 ...)) denotes an evaluable expression that is replaced
;;; by its value in the body of a transmitted message. Any variables used in the
;;; expression are first replaced by their values.

;; 1. the 4 queens as agents

(def-agent ’q1)
(def-agent ’q2)
(def-agent ’q3)
(def-agent ’q4)

;; 2. the conversation for the leftmost (first) queen

(def-conversation-class ’qc-1
 :name ’first-queen-class
 :content-language ’list
 :speech-act-language ’kqml
 :initial-state ’s0
 :final-states ’(yes no))

;; 3. the conversation for the middle queens (no matter how many)

(def-conversation-class ’qc-2
 :name ’middle-queen-class
 :content-language ’list
 :speech-act-language ’kqml
 :initial-state ’s0
 :final-states ’(yes))

;; 4. the conversation for the rightmost (last) queen

(def-conversation-class ’qc-3
 :name ’last-queen-class
 :content-language ’list
 :speech-act-language ’kqml
 :initial-state ’s0
 :final-states ’(yes))

;; 5. rules for first-queen-class

(def-conversation-rule ’r11
 :name ’r1
 :current-state ’s0

13

 :next-state ’s1
 :transmit

’(propose :sender q1
 :receiver q2
 :content (?(choose-new-position ?agent nil))
 :conversation c1))

(def-conversation-rule ’r12
 :name ’r2
 :current-state ’s1
 :received ’(reject :sender q2 :content ?c)
 :such-that ’(another-position-exists ?agent ?c)
 :next-state ’s1
 :transmit

’(propose
 :sender q1
 :receiver q2
 :content (?(choose-another-position ?agent ?c))
 :conversation c1))

(def-conversation-rule ’r13
 :name ’r3
 :current-state ’s1
 :received ’(reject :sender q2 :content ?c)
 :such-that ’(not(another-position-exists ?agent ?c))
 :next-state ’no
 :do ’(format t “~%;;; No solution possible”))

(def-conversation-rule ’r14
 :name ’r4
 :current-state ’s1
 :received ’(accept :sender q2 :content ?c)
 :next-state ’yes
 :do ’(format t “~%;;; Solution found ~s” ?c))

;; 6. rules for middle-queen-class

(def-conversation-rule ’r21
 :name ’r1
 :current-state ’s0
 :received ’(propose :sender ?s
 :content ?c
 :conversation ?conv)
 :such-that

 ’(and (at-left ?s ?agent)
 (not(new-position-exists ?agent ?c)))

 :next-state ’s0
 :transmit ’(reject :sender ?agent
 :receiver ?s
 :content ?c
 :conversation ?conv))

(def-conversation-rule ’r22

14

 :name ’r2
 :current-state ’s0
 :received ’(propose :sender ?s :content ?c
 :conversation ?conv)
 :such-that

 ’(and(at-left ?s ?agent)
 (new-position-exists ?agent ?c))

 :next-state ’s1
 :transmit

’(propose :sender ?agent
 :receiver (?(right-of ?agent))
 :content (?(choose-new-position ?agent ?c))
 :conversation ?conv))

(def-conversation-rule ’r23
 :name ’r3
 :current-state ’s1
 :received ’(accept :sender ?s :content ?c :conversation ?conv)
 :such-that ’(at-right ?s ?agent)
 :next-state ’yes
 :transmit

 ’(accept :sender ?agent
 :content ?c
 :receiver (?(left-of ?agent))
 :conversation ?conv))

(def-conversation-rule ’r24
 :name ’r4
 :current-state ’s1
 :received ’(reject :sender ?s :content ?c :conversation ?conv)
 :such-that

 ’(and(at-right ?s ?agent)
 (another-position-exists ?agent ?c))

 :next-state ’s1
 :transmit

 ’(propose :sender ?agent
 :receiver (?(right-of ?agent))
 :content (?(choose-another-position ?agent ?c))
 :conversation ?conv))

(def-conversation-rule ’r25
 :name ’r5
 :current-state ’s1
 :received ’(reject :sender ?s :content ?c :conversation ?conv)
 :such-that

 ’(and(at-right ?s ?agent)
 (not(another-position-exists ?agent ?c)))

 :next-state ’s0
 :transmit

 ’(reject :sender ?agent
 :receiver (?(left-of ?agent))
 :content (?(remove-last ?c))
 :conversation ?conv))

15

;; 7. rules for last-queen-class

(def-conversation-rule ’r31
 :name ’r1
 :current-state ’s0
 :received ’(propose :sender ?s :content ?c :conversation ?conv)
 :such-that

 ’(and (at-left ?s ?agent)
 (new-position-exists ?agent ?c))

 :next-state ’yes
 :transmit

 ’(accept :sender ?agent
 :receiver (?(left-of ?agent))
 :content (?(choose-new-position ?agent ?c))
 :conversation ?conv))

(def-conversation-rule ’r32
 :name ’r2
 :current-state ’s0
 :received ’(propose :sender ?s :content ?c :conversation ?conv)
 :such-that

 ’(and(at-left ?s ?agent)
 (not(new-position-exists ?agent ?c)))

 :next-state ’s0
 :transmit

 ’(reject :sender ?agent
 :receiver (?(left-of ?agent))
 :content ?c
 :conversation ?conv))

;;; Execution trace - exchanged messages

;;; (PROPOSE :SENDER Q1 :RECEIVER Q2 :CONTENT (0) :CONVERSATION C1)
;;; (PROPOSE :SENDER Q2 :RECEIVER Q3 :CONTENT (0 2) :CONVERSATION C1)
;;; (REJECT :SENDER Q3 :RECEIVER Q2 :CONTENT (0 2) :CONVERSATION C1)
;;; (PROPOSE :SENDER Q2 :RECEIVER Q3 :CONTENT (0 3) :CONVERSATION C1)
;;; (PROPOSE :SENDER Q3 :RECEIVER Q4 :CONTENT (0 3 1) :CONVERSATION
C1)
;;; (REJECT :SENDER Q4 :RECEIVER Q3 :CONTENT (0 3 1) :CONVERSATION C1)
;;; (REJECT :SENDER Q3 :RECEIVER Q2 :CONTENT (0 3) :CONVERSATION C1)
;;; (REJECT :SENDER Q2 :RECEIVER Q1 :CONTENT (0) :CONVERSATION C1)
;;; (PROPOSE :SENDER Q1 :RECEIVER Q2 :CONTENT (1) :CONVERSATION C1)
;;; (PROPOSE :SENDER Q2 :RECEIVER Q3 :CONTENT (1 3) :CONVERSATION C1)
;;; (PROPOSE :SENDER Q3 :RECEIVER Q4 :CONTENT (1 3 0) :CONVERSATION
C1)
;;; (ACCEPT :SENDER Q4 :RECEIVER Q3 :CONTENT (1 3 0 2) :CONVERSATION
C1)
;;; (ACCEPT :SENDER Q3 :CONTENT (1 3 0 2) :RECEIVER Q2 :CONVERSATION
C1)
;;; (ACCEPT :SENDER Q2 :CONTENT (1 3 0 2) :RECEIVER Q1 :CONVERSATION
C1)
;;; Solution found (1 3 0 2)
;;; No agent can be activated

