
Integrating Communicative Action, Conversations and DecisionTheory to Coordinate AgentsMihai Barbuceanu and Mark S. FoxEnterprise Integration LaboratoryUniversity of Toronto,4 Taddle Creek Road, Rosebrugh Building,Toronto, Ontario, Canada, M5S 3G9fmihai,msfg@ie.utoronto.caAbstractThe coordination problem in multi-agent systems isthe problem of managing dependencies between theactivities of autonomous agents, in conditions of in-complete knowledge about the dynamically chang-ing environment and about the actions, reactions andgoals of the agents populating it, such that to achievethe individual and shared goals of the participantsand a level of coherence in the behavior of the sys-tem as a whole. The paper articulates a precise con-ceptual model of coordination as structured "conver-sations" involving communicative actions, amongstagents. The model is extended to a complete lan-guage design that provides objects and control struc-tures that substantiate its concepts and allow the con-struction of real multi-agent systems in industrial do-mains. To account for the uncertainty of the envi-ronment and to capture user's prefernces about thepossible actions we integrate decision theoretic ele-ments based on Markov Decision Processes. Finally,to support incremental, in context acquisition and de-bugging of coordination knowledge we provide an ex-tension of the basic representation and a visual toolallowing users to capture coordination knowledge asit dynamically emerges from the actual interactions.The language has been fully implemented and suc-cessfully used in several industrial applications, themost important being the integration of multi-agentsupply chains for manufacturing enterprises. This ap-plication is used throughout the paper to illustrate theintroduced concepts and language constructs.IntroductionCoordination has been de�ned as the process ofmanag-ing dependencies between activities (Malone & Crow-ston 91). An agent that operates in an environmentholds some beliefs about the environment and can usea number of actions to a�ect the environment. Co-

ordination problems arise when (i) there are alterna-tive actions the agent can choose from, each choicea�ecting the environment and the agent and resultingin di�erent states of a�airs and/or (ii) the order andtime of executing actions a�ects the environment andthe agent, resulting in di�erent states of a�airs. Thecoordination problem is made more di�cult as agentsusually have incomplete knowledge of the environmentand of the consequences of their actions and the envi-ronment changes dynamically making it more di�cultto evaluate the current situation and the possible out-comes of actions. In a multi-agent system, the environ-ment is populated by other agents, each pursuing theirown goals and each endowed with their own capabili-ties for action. In this case, the actions performed byone agent constrain and are constrained by the actionsof other agents. To achieve their goals, agents will haveto manage these constraints by coordination.In this paper we adhere to the view that the coor-dination problem can be tackled by recognizing andexplicitely representing the knowledge about the inter-action processes taking place among agents. Jennings(Jennings 92) has coined the term "cooperation knowl-edge level" to separate the social interaction know-howof agents from their individual problem-solving know-how and to help focus e�orts on coming with principles,theories and tools for dealing with social interactionsfor problem solving. We also believe that principlesand theories must be put to work in real applications,and a major and often neglected way of doing this isby consolidating them into usable languages and tools.Our contribution in this sense is the articulation ofa model of "agent interactions" as knowledge drivenstructured conversations and its consolidation into apractical language design and implementation. Thelanguage, named COOL (from COOrdination Lan-guage), has been used in several industrial multi-agentsystems, the most important of which is suppply chainintegration, thoroughly used in this paper to illustratethe concepts and constructs of our system.



Assumptions and Basic IdeasWhile coordination can be de�ned as above, with-out making assumptions about the ways to achieve it,building a practical language for representing coordi-nation can not be done without clearly stating suchassumptions as its foundation. The assumptions onwhich our language is built are as follows.1. Autonomous agents have their own plans accordingto which they pursue their goals.2. Being aware of the multi-agent environment theyare in, agents plans explicitely represent interactionswith other agents. Without loss of generality, we as-sume that this interaction takes place by exchangingmessages.3. Agents can not predict the exact behavior of otheragents, but they can delimitate classes of alterna-tive behaviors that can be expected. As a conse-quence, agents plans are conditional over possibleactions/reactions of other agents.4. Agents plans may be incomplete or inaccurate andthe knowledge to extend or correct them may be-come available only during execution. For this rea-son, agents are able to extend and modify their plansduring execution.The most important construct of the language is theconversation plan. Conversation plans specify statesand associated rules that receive messages, check lo-cal conditions, transmit messages and update the lo-cal status. COOL agents posess several conversationplans which they instantiate to drive interactions withother agents. Instances of conversation plans, calledconversations, hold the state of execution with re-spect to the plan. Agents can have several activeconversations in the same time and control mecha-nisms are provided that allow agents to suspend con-versations while waiting for others to reach certainstages and to dynamically create conversation hier-archies in which child conversations are delegated is-sues by their parents and parents will handle situa-tions that children are not prepared for. Conversa-tion plans represent uncertainty by associating prob-abilities to the actions represented by rules. Userspreferences for various states and actions are repre-sented as rewards associated with actions and states.The theory of Markov Decision Processes (Bellman 57;Puterman 94) is used to determine the optimal actionsto execute in order to maximize the expected accumu-lated rewards of conversation plans.Multi-agent systems built with this language operateon the assumption of mutual comprehensibility. This

means that they are designed in such a way that, nor-mally, an agent can retrieve a conversation or a con-versation plan that handles a message received fromanother agent. This guarantees that, normally, con-versations would not get stuck because agents can notunderstand a message. This assumption is weaker thanthe assumption of cooperative systems, because it doesnot presuppose any intentional stance of the agents.On the other hand, we are aware of the limitations ofthis assumption and we provide mechanisms that allowagents to continue even when mutual comprehensibil-ity is not satis�ed. These come as recovery rules (whichcan modify the execution status or the plan) and muchmore important, as support for direct, in context, userguidance which is used for debugging and knowledgeacquisition.Integrating the Supply ChainThe supply chain of a modern "virtual" enterprise is aworld-wide network of suppliers, factories, warehouses,distribution centres and retailers through which rawmaterials are acquired, transformed into products, de-livered to customers, serviced and enhanced. In orderto operate e�ciently, supply chain functions must workin a tightly coordinated manner. But the dynamics ofthe enterprise and of the world market make this di�-cult: customers change or cancel orders, materials donot arrive on time, production facilities fail, workersare ill, etc. causing deviations from plan. In manycases, these events can not be dealt with locally, i.e.within the scope of a single supply chain "agent", re-quiring several agents to coordinate in order to reviseplans, schedules or decisions. In the supply chain, ourability to enable timely dissemination of information,accurate coordination of decisions and management ofactions among people and systems is what ultimatelydetermines the e�cient achievement of enterprise goalsand the viability of the enterprise on the world market.We address these coordination problems by orga-nizing the supply chain as a network of cooperatingagents, each performing one or more supply chain func-tions, and each coordinating their actions with otheragents. Figure 1 shows a multi-level supply chain. Atthe enterprise level, the Logistics agent interacts withthe Customer about an order. To achieve the Cus-tomer's order, Logistics has to decompose it into activ-ities (including for example manufacturing, assembly,transportation, etc.). Then, it will negotiate with theavailable plants, suppliers and transportation compa-nies the execution of these activities. If an executionplan is agreed on, the selected participants will committhemselves to carry out their part. If some agents failto satisfy their commitment, Logistics will try to �nd



Customer

Logistics

Warehouse1

Warehouse2

enterprise level

plant level Plant1

Resource

Mgr.

Shop
Floor

Scheduler

Plant2
Plant3

Design

Marketing

TransportationFigure 1: Multi-level supply chain.a replacement agent or to negotiate a di�erent con-tract with the Customer. At the plant level, a selectedplant will similarly plan its activities including pur-chasing materials, using existing inventory, schedulingmachines on the shop 
oor, etc. Unexpected eventsand breakdowns are dealt with through negotiationwith plant level agents or, when no solution can befound, submitted to the enterprise level.The Coordination LanguageCommunicationCOOL has a communication component that uses anextended version of the KQML language (Finin et al92). Essentially, we keep the KQML format for mes-sages, but we leave freedom to developers with re-spect to the allowed vocabulary of communicative ac-tion types. Also, we do not impose any content lan-guage. This makes our approach practically indepen-dent of KQML (any message language with commu-nicative actions would do), although a standard wouldbe a marked advantage. The following example illus-trates the form of extended KQML we are workingwith.(propose ;; new communicative action:sender A:receiver B:language list:content (or (produce 200 widgets)(produce 400 widgets)):conversation C1 ;; two new slots:intent(explore fabrication possibility))Agents and EnvironmentsAn agent is a programmable entity that can exchangemessages within structured "conversations" with otheragents, change state and perform actions. A COOLagent is de�ned by giving it a name, specifying the

(def-conversation-plan'customer-conversation:content-language 'list:speech-act-language 'kqml:initial-state 'start:final-states'(rejected failed satisfied):control 'interactive-choice-control-ka:rules '((start cc-1)(proposed cc-13 cc-2)(working cc-5 cc-4 cc-3)(counterp cc-9 cc-8 cc-7 cc-6)(asked cc-10 )(accepted cc-12 cc-11)))Figure 2: Customer-conversation.conversation plan for its initial conversation and spec-ifying the variables that form its local persistent database:(def-agent 'customer:initial-conversation-plan'initial-conversation-plan).When an agent is created, its initial conversationstarts running and while it runs, the agent is "alive".Agents are run as lightweight processes inside environ-ments that execute on local or remote sites. TCP/IPis used at the transport level.ConversationsConversation plans are rule based descriptions of howan agent acts in certain situations. COOL providesways to associate conversation plans to agents, thusde�ning what sorts of interactions each agent can han-dle. A conversation plan speci�es the available con-versation rules, their control mechanism and the localdata-base that maintains the state of the conversation.The latter consists of a set of variables whose persis-tent values (maintained for the entire duration of theconversation) are manipulated by conversation rules.Conversation rules are indexed on the values of a spe-cial variable, the current-state. Because of that, con-versation plans and actual conversations admit a graphrepresentation where nodes represent states and arcstransitions amongst states.Figure 2 shows the conversation plan governing theCustomer's conversation with Logistics in our supplychain application. Figure 3 shows the associated graphof this conversation plan. Arcs indicate the existenceof rules that will move the conversation from one stateto another.



start proposed

ask

counterp

working

accepted

failed

satisfied

rejected

rejected

1

13

6,7

8

2

5

3

4

11

12

9

10

Figure 3: Graph representation of customer-conversation.Error recovery rules are another component of con-versation plans (not illustrated in �gure 2). They spec-ify how incompatibilities among the state of a conver-sation and the incoming messages are handled. Suchincompatibilities can be caused by both planning andexecution 
aws. Error recovery rules are applied whenconversation rules can not handle the current situa-tion. They can address the problem either by modi-fying the execution state - e.g. by discarding inputs,changing the conversation current-state or just report-ing an error - or by executing new plans or modifyingthe current one - e.g. initiating a new clari�cation con-versation with the interlocutor.Actual conversations instantiate conversation plansand are created whenever agents engage in communi-cation. An actual conversation maintains the current-state of the conversation, the actual values of the con-versation's variables and various historical informationaccumulated during conversation execution.Each conversation plan describes an interaction fromthe viewpoint of an individual agent (in �gure 2 theCustomer). For two or several agents to "talk", theexecuted conversation plans of each agent must gen-erate sequences of messages that the others' conversa-tion plans can process (according to the mutual com-prehensibility assumption). Thus, agents that carryout an actual conversation C actually instantiate dif-ferent conversation plans internally. These instanceswill have unique names (e.g. Customer-C) inside eachagent, allowing the system to direct messages appro-priately.Conversation RulesConversation rules describe the actions that can beperformed when the conversation is in a given state.

(def-conversation-rule 'lep-1:current-state 'start:received '(propose :sender customer:content(customer-order:has-line-item ?li)):next-state 'order-received:transmit '(tell :sender ?agent:receiver customer:content '(working on it):conversation ?convn):do '(update-var ?conv '?order ?message))Figure 4: Conversation rule.In �gure 2 for example, when the conversation is inthe working state, rules cc-5, cc-4 and cc-3 are theonly rules that can be executed. Which of them actu-ally gets executed and how depends on the matchingand application strategy of the conversation's controlmechanism (the :control slot). Typically, we exe-cute the �rst matching rule in the de�nition order, butthis is easy to change as rule control interpreters arepluggable functions that users can modify at will. Fig-ure 4 illustrates a conversation rule from the conversa-tion plan that Logistics uses when talking to Customerabout orders.Essentially, this rule states that when Logistics, instate start, receives a proposal for an order (describedas a sequence of line-items), it should inform the sender(Customer) that it has started working on the proposaland go to state order-received. Note the use of vari-ables like ?li to bind information from the receivedmessage as well as standard variables like ?convn al-ways bound by the system to the current conversa-tion. Also note a side-e�ect action that assigns to the?order variable of the Logistics' conversation the re-ceived order. This will be used later by Logistics toreason about order execution. Among possibilities notillustrated, we mention arbitrary predicates over thereceived message and the local and environment vari-ables to control rule matching and the checking andtransmission several messages in the same rule.Our typology of rules also includes timeout, on-entryand on-exit rules. Timeout rules have a :timeout slot�lled with a value representing a number of time units.These rules are tried after the speci�ed number of timeunits has passed after entering the current state. Suchrules enable agents to operate in real time, for exam-ple by controlling the time spent waiting for a messageor by ensuring actions are executed at well determinedtime points. On-entry and on-exit rules are always exe-cuted when a conversation enters (exits) a state. Theyare useful for both mundane things like set-ups, clean-



(def-conversation-rule 'icc1-1:current-state 'process:such-that '(exists-runnable-or-waiting?agent ?conv):next-state 'process:do '(progn(move-msgs-to-addressee-conv?conv ?runnable)(execute-conversation ?runnable)))Figure 5: Conversation rule of the initial conversation.ups or instrumentations and non-mundane activitieslike strategic reasoning, as illustrated in a next sec-tion.The Initial ConversationWhen an agent is created, its initial conversation startsrunning. As long as this conversation is not termi-nated, the agent is alive and active. All incomingmessages are dispatched by the initial conversation.Sometimes they are dispatched to existing conversa-tions, sometimes new conversations are created to han-dle them (for example we de�ne an :intent slot ofmessages to help identify the conversation plans thatcan handle messages with given intents). The initialconversation is the ancestor of any conversation in thesystem. As new conversations are created, they canlater create their own child conversations, incremen-tally building trees of conversations. The message dis-patch mechanism allows direct dispatch to known con-versations, or various forms of top-down or bottom-upforwarding of the message (possibly with annotationsadded along the way) to several conversations. Thiscan emulate Brooks-like or hierarchical architectures.Figure 5 illustrates one rule from one initial conversa-tion plan. This rule checks if there exists a conversation(immediately) runnable or waiting for messages and, ifso, forwards it its messages and then executes it.Synchronized Conversation ExecutionNormally, a conversation may spawn another one andthey will continue in parallel. When we need to syn-chronize their execution, we can do that by freezingthe execution of one conversation until several othersreach certain states. This is important in situationswhere an agent can not continue along one path of in-teraction unless some conditions are achieved. In suchcases, the conversation that can not be continued issuspended, the conversations that can bring about thedesired state of a�airs are created or continued, andthe system ensures that the suspended conversationwill be resumed as soon as the condition it is waiting

for becomes true. The speci�cation of this condition isas an arbitrary predicate over the state of other con-versations.Integrating Decision Theoretic PlanningDecision theoretic planning integrates probabilitiesand utilities in the planning process, with the goal ofproducing plans that explicitely consider environmentuncertainity and user preferences, guaranteeing certainclasses of optimal behavior. The basic observationis that conversations as described in COOL can beclearly mapped to fully-observable, discrete-stateMarkov decision processes (MDP) (Bellman 57;Puterman 94). In this mapping, COOL states becomeMDP states (always �nite) and conversation rulesbecome MDP actions (again �nite) that generate statetransitions when executed. Let S be the set of statesand A the set of actions of a COOL conversation planviewed as an MDP. We extend our representationof conversation plans and rules as follows. First, wede�ne for each action (rule) a 2 A the probabilityP (s; a; t) that action a causes a transition to statet when applied in state s. In our framework, thisprobability quanti�es the likelihood of the rule beingapplicable in state s and that of its execution beingsuccessful. Second, we de�ne for each action (rule) thereward (a real number) denoting the immediate utilityof going from state s to state t by executing actiona, R(s; a; t). (Note that a COOL rule can perform atransition only from one given state to another, whichsimpli�es the computations described bellow). SinceCOOL conversation plans are ment to operate forinde�nite periods of time, we use the theory of in�nitehorizon MDP-s. A (stationary) policy � : s ! Adescribes the actions to be taken by the agent ineach state. We assume that an agent accumulates therewards associated with each transition it executes. Tocompare policies, we use the expected total discountedreward as the criterion to optimize. This criteriondiscounts future rewards by rate 0 � � < 1. For anystate s, the value of a policy � is de�ned as:V�(s) = R(s; �(s); t) + �Pt2S P (s; �(s); t)V�(t)The value of � at any state s can be computedby solving this system of linear equations. A policy� is optimal if V�(s) � V�0 (s) for all s 2 S and allpolicies �0. A simple algorithm for constructing theoptimal policy for a given reward structure is valueiteration (Bellman 57). This is an iterative algorithmguaranteed to converge under the assumptions ofin�nite horizon discounted reward MDP-s. Valueiteration produces sequences of n-step optimal value



1{1,1}

start proposed

rejected counterp

accepted

executed

failed

succeeded

5

6

3{0.4 1}

4
{0.3 1}

7

8

:

2{0.3, 1}

{0.3, 1}

{0.3, 1} {0.4, 2}

{0.5, 0}

{0.5, 8}
12

11

{0.4, 3}

9{0.3,4}

10{0.3,3}

accepted: 9, 8, 10
executed: 12, 11counterp: 7,4,6

proposed: 2,3,5Ordering produced by value iteration:Figure 6: Using value iteration to reorder rules.functions V n by starting with an arbitrary value forV 0 and computingV i+1(s) = maxa2AfR(s; a; t) +�Pt2S P (s; a; t)V i(t)gThe values V i converge linearly to the optimalvalue V �. After a �nite number n of iterations, thechosen action for each state forms an optimal policy� and V n approximates its value. To stop the itera-tion, an often used criterion requires termination whenjV i+1 � V ij � �(1� �)=2�This ensures that V i+1 is within � of the optimalfunction V � at any state.The application of this theory to conversation plansis illustrated in �gure 6. With each rule number weshow the probability and the reward associated to therule. We use the value iteration technique to actuallyorder the rules in a state rather than just computingthe best one. This is needed because of the conditionalnature of actions in COOL. The result of this is thereordering of rules in each state according to how closethey are to the optimal policy. Since COOL tries therules in the order they are encountered, the optimalreordering guarantees that the system will always trythe optimal behavior �rst. Of course, there are severalreward structures corresponding to di�erent criteria,like cost or time. To account for these, we actuallyproduce a separate ordering for each criterion. Thena weighted combination of criteria is used to producethe �nal ordering. In COOL we use on-exit rules todynamically estimate how well the system has donewith respect to the various criteria. If, for example, wehave spent too much time in the current plan, theserules will notice that. When entering a new state, on-entry rules look at the criteria that are under-achieved

and compute a new global criterion that corrects that(e.g. giving time a greater weight). This new criterionis used to dynamically reorder the rules in the currentstate. In this way we achieve adaptive behavior of theagent.In Context Acquisition and Debuggingof Coordination KnowledgeCoordination structures for applications like supplychain integration are generally very complex, hardto specify completely at any time and very likely tochange even dramatically during the lifespan of theapplication. Moreover, due to the social nature of theknowledge contained, they are better acquired and im-proved in an emergent fashion, during and as part ofthe interaction process itself rather than by o�-line in-terviewing of users, which for widely distributed sys-tems will be hard to locate and co-locate anyway. Be-cause of this the coordination tool must support (i)incremental modi�cations of the structure of interac-tions e.g. by adding or modifying knowledge expressedin rules and conversation objects, (ii) system operationwith incompletely speci�ed interaction structures, in amanner allowing users to intervene and take any actionthey consider appropriate (iii) system operation in auser controlled mode in which the user can inspect thestate of the interaction and take alternative actions.We are satisfying these requirements by providinga subsystem that supports in context acquisition anddebugging of coordination knowledge. Using this sys-tem execution takes place in a mixed-initiativemode inwhich the human user can decide to make choices, ex-ecute actions and edit rules and conversation objects.The e�ect of any user action is immediate, hence thefuture course of the interaction can be controlled inthis manner.Essentially, we allow conversation rules to be incom-plete. An incomplete rule is one that does not con-tain complete speci�cations of conditions and actions.Since the condition part may be incomplete we don'treally know whether the rule matches or not, hence thesystem does not try to match the rule itself. Since theaction part may be incomplete, the system can not ap-ply the rule either. All that can be done is to let theuser handle the situation. Interaction speci�cationsmay contain both complete and incomplete rules inthe same time. Assuming the usual strategy of apply-ing the �rst matching rule in the de�nition order, wecan have two situations. The �rst is when a completerule matches. In this case it is executed in the normalway. The second is when an incomplete rule is en-countered (hence no previous complete rule matched).In this case the acquisition/debugging regime is trig-



(def-conversation-rule 'cc-13:current-state 'proposed:received '(ask :sender logistics):next-state 'proposed:transmit '(tell :receiver logistics:sender ?agent:conversation ?convn):incomplete t)Figure 7: Incomplete conversation rule.gered, with the user in control over what to do in therespective situation, as explained further on.Figure 7 shows an example incomplete rule from thecustomer-conversation that allows a user interactingwith the Customer agent to answer (indeterminate)questions from the Logistics agent.The rule is incomplete in that it does not specifyhow to answer a question - the :transmit part onlycontains the generic part of the response message. Itis designed to work under the assumption that once aquestion is received, the user will formulate the answerinteractively, using the graphical interface provided bythe acquisition tool. When the knowledge acquisitioninterface is popped up, the user will have access tothe received message containing the actual question.Using whatever tools are available, the user can deter-mine the answer. Then, the user can create a copy ofthe rule and edit the transmitted message to includethe answer. This rule can be executed (thus answer-ing the question) and then discarded. Alternatively,if the new rule contains reusable knowledge, it can beretained, marked as complete and hence made avail-able for automated application (without bothering theuser) next time.The facilities provided by this service can be illus-trated with examples from its graphical interface. Toview the status of the conversation at the time anincomplete rule was encountered, the acquisition ser-vice shows the �nite state abstraction (like in �gure8). Here we have an instance of the logistics execu-tion process as seen by the Logistics agent. A textualpresentation of the conversation and a browser for theconversation variables are also available.Another aspect of the conversation context is formedby the available rules. This is also shown in �gure 8.The browser for conversation rules allows the user toinspect the rules indexed on the current state (drawn asa larger circle). Rules can be checked for applicabilityin the current context, with the resulting variable bind-ings shown so that the user can better assess the impactof each rule. The interface allows the user to performa number of corrective actions like moving a rule to a

di�erent position or removing it from the conversationplan. It is also possible to invoke the rule editor, theconversation plan editor or the browser for plans andrules allowing the user to inspect other plans and rulesin the system. The e�ect of any of these modi�cationswill be immediate. Finally, the user can leave the in-terface and continue execution by applying a speci�edrule. Other services include presentation and browsingof the conversation history and interactive, stepwisemodi�cation and execution of rule actions. The mod-i�cations performed to the action part can be savedinto a new rule that can be "learned" by the system.Back to the Supply ChainGoing back to the supply chain, we implement thesupply chain agents as COOL agents and devisecoordination structures appropriate for their tasks.Figure 9 shows the conversation plan that the Lo-gistics agent executes to coordinate the entire sup-ply chain. The process starts with the Customeragent sending a request for an order (according tocustomer-conversation shown in �gures 2 and 3).Once Logistics receives the order, it tries to decom-pose it into activities like manufacturing, assembly,transportation, etc. This is done by running an ex-ternal constraint based logistics scheduler inside a ruleattached on the order-received state. If this de-composition is not possible, the process ends. If thedecomposition is successful, the conversation goes tostate order-decomposed. Here, Logistics matches theresulted activities with the capabilities of the existingagents, trying to produce a ranked list of contractorsthat could perform the activities.If this fails, it will try to negotiate a slightly di�er-ent contract that could be executed with the availablecontractors (state alternative-needed). If rankingsucceeds, Logistics tries to form a team of contractorsthat will execute the activities. This is done in twostages. First, a large team is formed. The large teamcontains all ranked contractors that are in principleinterested to participate by executing the activity de-termined previously by Logistics. Membership in thelarge team does not bind contractors to execute theiractivity, it only expresses their interest in doing theactivity. If the large team was successfully formed (atleast one contractor for each activity), then we moveon to forming the small team. This contains exactlyone contractor per activity and implies commitment ofthe contractors to execute the activity. It also impliesthat contractors will behave cooperatively by inform-ing Logistics as soon as they encounter a problem thatmakes it impossible for them to satisfy their commit-ment. In both stages, team forming is achieved by sus-



Figure 8: Inspecting, editing and applying rules.
start

order-received

fail

alternative-proposed

alternative-needed

contractor-needed

contractors-committed

success

small-team-formed

large-team-formed

contractors-ranked

order-decomposed

asked

1

24

25

3

22,26

21

2

4 5

8

7

10

11

6

9

12 13

15
16

18

20
14

19

27

23

17Figure 9: Logistics execution conversation plan
pending the current conversation and spawning teamforming conversations. When forming the small team,Logistics similarly discusses with each member of thelarge team until �nding one contractor for each activ-ity. In this case the negotiation between Logistics andeach contractor is more complex in that we can haveseveral rounds of proposals and counter-proposals be-fore reaching an agreement. This is normal, becauseduring these conversations contractual relations are es-tablished.In the small-team-formed state we continue withother newly spawned conversations with the teammembers to kick o� execution. After having startedexecution, we move to state contractors-committedwhere Logistics monitors the activities of the con-tractors. If contractors exist that fail to completetheir activity, Logistics will try to replace them withanother contractor from the large team. The largeteam contains contractors that are interested in theactivity and are willingly forming a reserve team,hence it is the right place to look for replacementsof failed contractors. If replacements can not befound, Logistics tries to negotiate an alternative con-tract (alternative-needed) with the Customer. Todo that, Logistics relaxes various constraints in theinitial order (like dates, costs, amounts) and uses itsscheduling tool to estimate fesability. Then, it makesa new proposal to the Customer. Again, we may havea cycle of proposals and counter-proposals before a so-



lution is agreed on. If such a solution is found, theconversation goes back to the order-received stateand resumes execution as illustrated.The typical execution of the above coordinationstructure has one or more initial iterations duringwhich things go as planned and agents �nish work suc-cesfully. Then, some contractors begin to lack the ca-pacity required to take new orders (again this is de-termined by the local scheduling engine that considersthe accumulated load of activities) and reject Logis-tics' proposal. In this case, Logistics tries to relaxsome constraints in the order (e.g. extend the duedate to allow contractors to use capacity that becomesavailable later on). If the Customer accepts that (af-ter negotiation) then the new (relaxed) order is pro-cessed and may eventually succeed. The reward struc-tures used give preference to accomplishing work andcommitments above anything else, but prefers quickrejections to long negotiations that terminate with re-jections. Least preferred is failure of committed work.We usually run the system with 5-8 agents and 40-60concurrent conversations. The COOL speci�cation hasabout 12 conversation plans and 200 rules and utilityfunctions. The Scheduler is an external process usedby agents through an API. All this takes less than 2600lines of COOL code to describe. We remark the con-ciseness of the COOL representation given the com-plexity of the interactions and the fact that the size ofthe COOL code does not depend on the actual num-ber of agents and conversations, showing the 
exibilityand adaptability of the representation.ConclusionsWe believe the major contribution of this work isadvancing a complete language design and an asso-ciated programming system for a practical, applica-tion independent language for describing and carry-ing out coordination in multi-agent settings. Pre-vious theoretical work has investigated related statebased representations (Rosenschein & Kaebling 95;vonMartial 92) but has not consolidated the theoret-ical notions into usable language constructs, makingit hard to use their ideas into applications. Vari-ous formalizations of mental state notions related toagency (Cohen & Levesque 90; Cohen & Levesque 91;Levesque, Cohen & Nunes 90) have provided seman-tic models that clarify a number of issues, but operateunder limiting assumptions that similarly make prac-tical use and consolidation di�cult. The work of (Jen-nings 95; Jennings 92) provided part of the initial mo-tivation for our approach to coordination as a domainof knowledge to be explicitely represented and instru-mented. Some conversational concepts have been used

by (Kaplan et al 92; Shepherd, Mayer & Kuchinsky 90;Medina-Mora et al 92) in the context of collabora-tive and work
ow applications. We have extendedand modi�ed them for use in multi-agent settings andadded things like knowledge acquisition, decision the-oretic optimization and sophisticated control that ledto a more generic, application independent language.Agent oriented programming (Shoham 93) is also re-lated to our work as it similarly uses communicativeaction, rules and agent representations. Our languagedi�ers from AOP in the explicit provision of the con-versation notion, the more powerful control structuresthat emerge from it, the use of decision theretic ideasand the more powerful programming environment in-cluding the essential support for knowledge acquisition.With respect to our own previously reported workon COOL (Barbuceanu & Fox 95), this paper presentsimportant advances related to the decision theoretic el-ements, the knowledge acquisition component and theindustrial application to supply chain management.Being able to consolidate generic concepts and con-structs into a language guarantees that developers ofmulti-agent systems will be able to reuse coordinationstructures and will be supported in building their ownby the high level notions embodied in the language.As another contribution, we believe that recent ap-proaches to agent communication like KQML (Finin etal 92), by focusing exclusively on generic vocabulariesof communicative actions, have neglected the planningand execution dimension of the coordination task, re-quiring users to implement it from scratch. With alanguage like COOL (which, we repeat, is in fact inde-pendent of KQML), these aspects are well supportedand the expresiveness of KQML communicative actionscan be taken advantage of. With the support for deci-sion theoretic elements, the language explicitely takesinto consideration users' probabilities and preferences,guaranteeing a certain notion of optimal behavior w.r.tthese quanti�cations. Finally, the language providesthe representational foundation for tackling the impor-tant problem of acquiring dynamically emerging coor-dination knowledge. We also report on this aspect in(Barbuceanu & Fox 96).The coordination language has been now evaluatedon several problems, ranging from well-known testproblems like n-queens to the supply chain of ourTOVE virtual enterprise (Fox 93) and to supply chaincoordination projects carried out in cooperation withindustry. In all situations, the coordination languageenabled us to quickly prototype the system and buildrunning versions demonstrating the required behavior.Often, an initial (incomplete) version of the system hasbeen built in a few hours enabling us to immediately



demonstrate its functionality. We have built modelscontaining hundreds of conversation rules and tens ofconversation plans in several days. Moreover, we havefound the approach explainable to industrial engineersinterested in modeling manufacturing processes.Our major priority at the moment continues to begathering empirical evidence for the adequacy of theapproach to industrial applications and for that mat-ter we are jointly working with several industries. Inone project for example, we are using the system toproduce hard data characterizing how various coordi-nation schemes a�ect the responsiveness and robust-ness of supply chains.Since our approach is in an essential way manag-ing work
ow, we have also started addressing orga-nizational work
ow modeling and enactment. Lastbut not least, explaining the decisions and behaviorof multi-agent systems will become more and more im-portant as we move into more complex applications.Having explicit representations of coordination mech-anisms forms the basis for providing explanations andwe are studying the issue as part of another joint e�ortwith industry. AcknowledgmentsThis research is supported, in part, by the Manufac-turing Research Corporation of Ontario, Natural Sci-ence and Engineering Research Council, Digital Equip-ment Corp., Micro Electronics and Computer ResearchCorp., Spar Aerospace, Carnegie Group and QuintusCorp. ReferencesM. Barbuceanu and M.S. Fox. COOL: A Languagefor Describing Coordination in Multi-Agent Systems.In Proceedings of the First International Conferenceon Multi-Agent Systems(ICMAS-95), pp 17-24, SAnFrancisco, CA, june 1995.M. Barbuceanu and M.S. Fox. Capturing and Model-ing Coordination Knowledge for Multi-Agent System.To appear in the International Journal of Intelligentand Cooperative Information Systems, 1996.Richard E. Bellman. Dynamic Programming. Prince-ton University Press, Princeton 1957.P. R. Cohen and H. Levesque. Intention is Choice withCommitment. Arti�cial Intelligence 42, pp 213-261,1990.P. R. Cohen and H. Levesque. Teamwork. Nous 15,pp 487-512, 1991.T. Finin et al. Speci�cation of the KQML Agent Com-munication Language. The DARPA Knowledge Shar-

ing Initiative, External Interfaces Working Group,1992.M. S. Fox. A Common-Sense Model of the Enter-prise. In Proceedings of Industrial Engineering Re-search Conference, 1993.N. R. Jennings. Towards a Cooperation KnowledgeLevel for Collaborative Problem Solving. In Proceed-ings 10-th European Conference on AI, Vienna, Aus-tria, pp 224-228, 1992.N. R. Jennings. Controlling Cooperative ProblemSolving in Industrial Multi-Agent Systems UsingJoint Intentions. Arti�cial Intelligence, 75 (2) pp 195-240, 1995.S. M. Kaplan, W.J. Tolone, D.P. Bogia, C. Big-noli. Flexible, Active Support for Collaborative Workwith ConversationBuilder. In CSCW 92 Proceedings,pp378-385, 1992.H. J. Levesque, P. R. Cohen and J. H. Nunes. On Act-ing Together. In Proceedings of 8-th National Confer-ence on AI, Boston, pp 94-99, 1990.T. W. Malone and K. Crowston. Toward an Inter-disciplinary Theory of Coordination. Center for Co-ordination Science Technical Report 120, MIT SloanSchool, 1991F. vonMartial. Coordinating Plans of AutonomousAgents, Lecture Notes in Arti�cial Intelligence 610,Springer Verlag Berlin Heidelberg, 1992.R. Medina-Mora, T. Winograd, R. Flores, F. Flores.The Action Work
ow Approach to Work
ow Man-agement Technology. In CSCW 92 Proceedings, pp281-288, 1992.Martin L. Puterman. Markov Decision Processes:Discrete Stochastic Dynamic Programming. Willey,New York, 1994.S. R. Rosenschein and L. P. Kaebling. A SituatedView of Representation and Control. Arti�cial Intel-ligence 73 (1-2) pp 149-173, 1995.A. Shepherd, N. Mayer, A. Kuchinsky. Strudel -An Extensible Electronic Conversation Toolkit. InCSCW 90 Proceedings, pp 93-104, 1990.Y. Shoham. Agent-Oriented Programming. Arti�cialIntelligence 60, pp 51-92, 1993.


